K^{bar} -nucleus interaction studied by $^{12}C(K^{-}, p)$ spectrum

Yudai Ichikawa (JAEA) for the J-PARC E05 Collaboration 2016 JAEA/ASRC Reimei Workshop: New exotic hadron matter at J-PARC

Contents

- Introduction
 - K^{bar}-nucleus interaction
 - KEK E548 experiment
 - Theoretical criticism for E548
- $^{12}C(K^-, p)$ study in the J-PARC E05 pilot run
 - Detector setup
 - Preliminary analysis result
- Summary

K^{bar}-A interaction

An important tool is kaonic atoms.

Simple to approach

$$[\Delta - 2\mu(B + V_{opt} + V_c) + (V_c + B)^2]\Psi = 0,$$

The depth of K^{bar} -nucleus potential strongly depends on the model setting. It is not conclusive whether K^{bar} -nucleus potential is "deep" or "shallow"!! Both type of potential can reproduce the kaonic atoms data.

To solve this problem, a new experimental constraint is necessary!

Chiral motivated model

$$Re(V_0) \leq -60 MeV$$

KEK E548 [12 C(K^{-} , N) spectrum]

- ${}^{12}C(K^-, n)$, ${}^{12}C(K^-, p)$ at 1GeV/c
 - K⁻ beam: 10⁴/spill
 - KEK-PS K2 beamline + KURAMA
 - MM resolution \sim 10 MeV (σ)
 - $-\theta_{sc}$ < 4.1° was chosen
- V_{opt} was studied comparing DWIA
 - $C(K^{-}, n): V_{opt} = (Re 190, Im 40) MeV$
 - $C(K^-, p): V_{opt} = (Re -160, Im -50) MeV$ (dotted line: Vopt = (-60, -60) MeV)

Discussion for KEK E548

- V. K. Magas *et al.*, pointed out a serious drawback in their experimental setup.
 - In E548, at lest one charged particle detected by their decay counter was required (semi-inclusive spectrum).
 V. K. Magas et al., PRC 81, 024609 (2010).

[Simulation]

 θ_K and mom_K of K⁻ for K⁻p \rightarrow K⁻p (θ_p < 4.1°) w/o FM for p_K = -1.0 and -1.8 GeV/c

¹²C(*K*⁻, *p*) data as a by-product of J-PARC E05 experiment

J-PARC E05 experiment:

Ξ hypernuclei search by ¹²C(K⁻, K⁺) reaction

$^{12}C(K^{-}, p)$ in E05 pilot run

- Goal of this measurement
 - Compare the real inclusive spectrum with DWIA calculation.
 - Check the semi-inclusive effect by decay counter ("KIC").
- Difference from E548: Beam mom [E548: 1.0 GeV/c, E05: 1.8 GeV/c]

We took this data as a byproduct of E05 (2015/10).

Data summary

Target	Beam mom (p_{K}) [GeV/c]	N _{beam} × ε _{DAQ} [G Kaon]
CH ₂ [9.54 g/cm ²] (Elementary process)	1.5	2.08
	1.6	2.19
	1.7	2.06
	1.8	7.30
	1.9	0.87
Carbon [9.36 g/cm ²]	1.5	0.57
	1.8	56.6

CH₂ data for elementary process

We will evaluate the elementary differential cross section for $K^-p \rightarrow K^-p$ elastic scattering process precisely.

$p(K^-, p)$ spectrum at 1.8 GeV/c

We could fit the obtained spectrum.

- A proton target data was evaluated by using CH₂ and C target data.
- Each yield was free parameter.
- The resonance production processes such as $K^-p \to K^*(892)^-p \to K\pi p$ and $K^-p \to \Lambda(1520)\pi^0 \to \overline{K}\pi p$ were included.

¹²C(*K*⁻, *p*) inclusive spectrum analysis

There are significant yield in the bound region same as KEK E548. We could obtain the reasonable solution for 0.15 < -BE < 0.4 [GeV] region with toy model fitting, which was not included interactions. However, we could not reproduce -BE < 0.1 [GeV] region.

Coincidence analysis

We can see the coincidence probability drop around Elastic region as we expected. However, the coincidence probability is more drastically dropped around BE = 0 GeV. In principle, the final state of BE < 0 region should be included Λ or Σ or π . Thus, the coincidence probability for BE < 0 region should be higher than QF elastic region.

The KEK E548 coincidence (UD coin) has distorted original inclusive spectrum.

Coincidence analysis $(0^{\circ} < \theta_{Kp} < 4.1^{\circ})$

Comparison the BE spectrum for each KIC multiplicity condition. It seems there are non-exponential component ("KINK") around $-BE \sim -0.1$ GeV.

Coincidence analysis $(0^{\circ} < \theta_{Kp} < 4.1^{\circ})$

Comparison the BE spectrum for each KIC multiplicity condition. It seems there are non-exponential component ("KINK") around $-BE \sim -0.1$ GeV.

Coincidence analysis $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$

Similar "KINK" structures can be seen in the larger scattering angle $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$ spectra.

Coincidence analysis $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$

Similar "KINK" structures can be seen in the larger scattering angle $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$ spectra.

Discussion for the origin of "KINK"

Theoretical calculation

Theoretical calculation for $^{12}C(K^-, p)$ reaction of $p_K = 1.0 \text{ GeV/}c$ was carried out by J. Yamagata-Sekihara et al.

We hope to compare the obtained spectrum with theoretical calculation of $p_{\kappa} = 1.8 \text{ GeV/}c$.

 $\theta_{Kp} = 0^{\circ}$

- w energy dependence
 - = w phase space factor for phenomenology
- --- w/o energy dependence
 - = w/o phase space factor
 for phenomenology

Similar KINK BE ~ 0.1 GeV

Summary

- K^{bar}-A interaction is studied by kaonic atom data etc...
 - It is still under discussion whether the potential is "deep" or "shallow".
 - ¹²C(K^- , N) spectra were compared with DWIA calculation by KEK E548. The charged particle hit requirement might distort the inclusive spectrum.
- We took $^{12}C(K^-, p)$ real inclusive spectrum as a by-product of J-PARC E05 experiment in October 2015.
 - − We will show dσ/dΩ_K-_{p→K}-_p at p_K = 1.5, 1.6, 1.7, 1.8, and 1.9 GeV/c.
 - We observed the significant yield in bound region same as KEK E548. The 12 C(K^- , p) spectrum couldn't be reproduced —BE < 0.1 GeV region by toy model fitting, which is not included secondary reactions.
 - We have found the coincidence distorted the original spectrum.
 - − It seems there are "KINK" structure around BE \sim 0.1 GeV. It might be originated from the threshold of $K^-N \rightarrow \Sigma \pi$ absorption.
 - We will compare our spectrum with theoretical calculation.

J-PARC E05 Collaboration

- Kyoto University
 - H. Ekawa, S. Kanatsuki, T. Nagae, T. Nanamura, M. Naruki
- JAEA
 - S. Hasegawa, K. Hosomi, Y. Ichikawa, K. Imai, H. Sako, S. Sato, H. Sugimura, K. Tanida
- Osaka University
 - K. Kobayashi, S.H. Hayakawa, T. Hayakawa, R. Honda, Y. Nakada, M. Nakagawa, A. Sakaguchi
- Tohoku University
 - Y. Akazawa, M. Fujita, K. Miwa, Y. Sasaki, H. Tamura
- KEK
 - K. Aoki, T. Takahashi, M. Ukai
- Korea University
 - J.K, Ahn, W. Jung, S. H. Kim
- Torino University
 - E. Botta, A. Feliciello, S. Marcello
- JINR
 - P. Evtoukhovitch, Z. Tsamalaidze,
- Seoul National University
 - J.Y Lee, T. Moon
- Gifu University
 - S. Kinbara
- Kitasato University
 - T. Hasegawa
- RCNP
 - K. Shirotori, T. Gogami

2015/11/19 J-PARC K1.8 Counting Room