Few-body approach for structure of light kaonic nuclei

Shota Ohnishi (Hokkaido Univ.)
In collaboration with
Wataru Horiuchi (Hokkaido Univ.)
Tsubasa Hoshino (Hokkaido Univ.)
Kenta Miyahara (Kyoto Univ.)
Tetsuo Hyodo (YITP, Kyoto Univ.)

$K^{b a r} N$ interaction

- Phenomenological $K^{\text {bar }} N$ interactions

Dalitz, Wong, Tajasekaran, PR 153(1967)1617.

- Scattering length and flavor SU(3)
- Strongly attractive
- produce quasi-bound state of $K^{b a r} N$, so-called Λ (1405)

- Chiral SU(3) symmetry Kaiser, Siege, Weise, NPA594(1995).
- NG boson associated with spontaneous breaking of chiral SU(3) symmetry
- Strongly attractive
- Consistent with $K^{b a r} N$ scattering data
- Two poles,
$K^{b a r} N$ quasi-bound state $\rightarrow 1420 \mathrm{MeV}$

Experimental constraint on $K^{b a r} N$ interaction

above $K^{\text {bar }} N$ threshold energy: $\quad-K-p$ cross section
at/just-below KN threshold energy: - Branching ratio

- kaonic atom(new data by SIDDHARTA)
below the $K^{\text {bar }} N$ threshold energy:
- So far, cannot perform $\pi \Sigma$ elastic scattering experimentally
\rightarrow large ambiguity still remains
- Few-body reaction ($K^{-d} \rightarrow \pi \Sigma n$)
- Few-body K-bound system (KNN, KNNNN, KNNNN.....)

J-PARC E31 experiment

$\checkmark \quad \Lambda(1405)$ production via the $K^{-} d \rightarrow \pi \Sigma n .\left(p_{k}=1 \mathrm{GeV}\right)$
\checkmark We can access below the $K^{b a r} N$ threshold.

Kawasaki's slide in MENU2016

Full multiple scattering
SO, Y. Ikeda, T. Hyodo, W. Weise, Phys. Rev. C93, 025207 (2016).

$>$ 2-step calculation qualitatively reproduce the cross section obtained by full calculation
$>$ Quantitative (Resonance parameters)
\rightarrow Faddeev calculation is necessary

Magnitude of cross section

For the magnitude of the cross section, high energy amplitude is important
H. Kamano and T.-S. H. Lee, arXiv:1608.03470[nucl-th].

low energy

Kaonic nuclei

$>$ Few-body K-bound system (KNN, KNNNN, KNNNN.....) is useful to study subthreshold $K^{\text {bar }} N$ interaction

deeply bound and high density systems are proposed
\checkmark phenomenological $\bar{K} N$ potential which reproduce the $\Lambda(1405)$ as $\bar{K} N$ quasi-bound state (strongly attractive in $I=0, L=0$)
\checkmark optical potential/g-matrix approach

Strategy of this work

Y. Akaishi, T. Yamazaki, PRC 65, 044005 (2002).

Dote, et. al., PLB590, 51(2004).

AY-potential

- Phenomenological
- Energy independent

Many-body approximation

- Optical potential
- g-matrix interaction

This works

SIDDHARTA pot.

- Chiral SU(3) dynamics
- Energy dependent

Miyahara, Hyodo,
PRC 93 (2016) 1, 015201.

Few-body approach

- Correlated Gaussian basis
- Stochastic variational method
- Three- to seven-body calc.

Varga, Suzuki,
Phys. Rev C52 (1995) 2885.

Deeply binding and compressed systems

How structure of light nuclei is changed by injected kaon?

$K^{b a r} N$ interactions

SIDDHARTA potential K.Miyahara, T.Hyodo, PRC 93 (2016) 1, 015201.

> Energy-dependent K ${ }^{\text {bar }} \mathrm{N}$ single-channel potential
> Chiral SU(3) dynamics using driving interaction at NLO
Pole energy: 1424-26i and $1381-81 \mathrm{i}$ MeV Y.lkeda, T.Hyodo, W.Weise, NPA881 (2012) 98
$>K^{\text {bar }} N$ two-body energy in N -body systems are determined as:

$$
\sqrt{s}=m_{N}+m_{\bar{K}}+\delta \sqrt{s}, \quad-B_{K} \equiv\langle\Psi| H|\Psi\rangle-\langle\Psi| H_{N}|\Psi\rangle,
$$

$$
\text { Type I: } \quad \delta \sqrt{s}=-B_{K}, \quad \text { Type II: } \quad \delta \sqrt{s}=-B_{K} /(N-1), \text { for } N \text {-body }
$$

A. Dote, T. Hyodo, W. Weise, NPA804, 197 (2008).

Akaishi-Yamazaki (AY) potential
Akaishi, Yamazaki, PRC65, 04400(2002).
> Energy-independent
> Reproduce $\Lambda(1405)$ as $K^{\text {bar }} N$ quasi-bound state

Correlated Gaussian basis

$$
\begin{gathered}
\Psi=\sum_{i=1}^{K} c_{i} \phi_{i}, \quad \phi_{i}=\mathcal{A}\left\{e^{-\frac{1}{2} \widetilde{x} A_{i} x} \chi_{i J M} \eta_{i T M_{t}}\right\} \\
A_{i}:(N-1) \times(N-1) \text { matrix (paramaters of coordinates) for } N \text {-body } \\
\boldsymbol{x}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N-1}\right\}, \chi_{i J M}: \text { spin function, } \eta_{i T M_{t}}: \text { isospin function }
\end{gathered}
$$

- Higher partial wave for each \boldsymbol{x}_{i} are included by off-diagonal component of A_{i}.
- Matrix elements are analytically calculable for N-body systems
- Functional form of the correlated Gaussian remains unchanged under the coordinate transformation

$$
\mathbf{y}=T \mathbf{x} \Rightarrow \tilde{\mathbf{y}} B \mathbf{y}=\tilde{\mathbf{x}} \tilde{T} B T \mathbf{x}
$$

Stochastic variational method

- To obtain the well variational basis, we increase the basis size one-by-one by searching for the best variational parameter A_{i} among many random trials

$$
\begin{aligned}
& \text { Structure of } \underset{\text { Model }}{\text { kaonic nuclei }} \underset{\text { SIDDAARTA }}{(N=3-5)} \\
& \overline{K^{-} p p-\bar{K}^{0} p n\left(J^{\pi}=0^{-}\right)} \\
& B[\mathrm{MeV}] \quad 27.9 \\
& \Gamma[\mathrm{MeV}] \quad 30.9 \\
& { }^{3} \mathrm{He} K^{--}{ }^{3} \mathrm{H} \bar{K}^{0}\left(J^{\pi}=1 / 2^{-}\right) \\
& \begin{array}{lll}
B[\mathrm{MeV}] & 45.3 & 49.7
\end{array} \\
& \begin{array}{lll}
\Gamma[\mathrm{MeV}] & 25.5 & 69.4
\end{array} \\
& { }^{4} \mathrm{He} K^{-}{ }^{4} \mathrm{H} \bar{K}^{0}\left(J^{\pi}=0^{-}\right) \\
& \begin{array}{ll}
B[\mathrm{MeV}] & 69.6 \\
\Gamma[\mathrm{MeV}] & 28.0
\end{array} \\
& \text { Type II } \\
& \text { Type I } \\
& 30.9 \\
& 45.3 \\
& 25.5 \\
& 69.6 \\
& 28.0 \\
& \text { Type II } \\
& 49.7 \\
& 69.4 \\
& 75.5 \\
& 74.5 \\
& 48.7 \\
& 61.9 \\
& 72.6 \\
& 78.6 \\
& 87.4 \\
& 87.2
\end{aligned}
$$

$>$ Binding energies are similar values for Type I, II
$>$ Binding energies for SIDDHARTA pot. are 20 MeV smaller than AY pot.
$>$ Width of Type II is 2-3 times larger than Type I
$>$ Binding energy for AY-potential is less than 100 MeV

Structure of $K^{b a r} N N N N N N$ with $J^{\pi}=0^{-}$and 1^{-}

	${ }^{6} \mathrm{LiK}^{-}-{ }^{6} \mathrm{He} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$			
Model	SIDDHARTA		AY	
	Type I	Type II		
$B[\mathrm{MeV}]$	68.7	77.0	102	
$\Gamma[\mathrm{MeV}]$	24.0	73.2	86.4	
	SIDDHARTA ${ }^{6} \mathrm{LiK}^{-}-{ }^{6} \mathrm{He} \bar{K}^{0}\left(J^{\pi}=1^{-}\right)$			
Model	Type I	Type II	AY	
	71.5	78.8	93.7	
$B[\mathrm{MeV}]$	26.3	74.0	86.7	
$\Gamma[\mathrm{MeV}]$				

$>1^{-}$state are ground state for SIDDHARTA potential, but the 0^{-}state is ground state for AY potential
$>$ From the energy spectra of seven-body system, we may extract the information of KN interaction

Structure of $K^{b a r} N N N N N N$ with $J^{\pi}=0^{-}$and 1^{-}

$>1^{-}$state are ground state for SIDDHARTA potential, but the 0^{-}state is ground state for AY potential
$>$ From the energy spectra of seven-body system, we may extract the information of KN interaction

Summary

- We have investigated the structure of light kaonic nuclei, $K^{b a r} N N$, $K^{b a r}$ NNN, K ${ }^{\text {bar }}$ NNNN and $K^{b a r} N N N N N N$
- Width largely depends how to deal with two-body energy in N body systems, and it is around $25-30 \mathrm{MeV}$ for Type I and 60-75 MeV for Type II
- B.E is not sensitive how to deal with two-body energy in N -body systems
- Difference between B.E. for SIDDHARTA and AY is $\Delta B_{K} \sim 20 \mathrm{MeV}$
- In the seven-body systems, $J^{\pi}=1^{-}$and 0^{-}states are degenerate for SIDDHARTA potential, but 0^{-}state is ground state for AY potential

Future plan

- Channel-coupling between $\mathrm{K}^{\text {bar }} \mathrm{N}-\pi \Sigma$
- Kaonic atom (T. Hoshino, S.O, W. Horiuchi)

N and K number dependence of B.E.

$\begin{array}{ll} & 180 \\ \underset{~}{\aleph} & 150 \\ \sum & 120 \end{array}$		$\begin{array}{r} B_{K}^{S I D} \equiv B^{S I D}-B_{N} \sim 34 \mathrm{MeV} \\ B_{K}^{A Y} \equiv B^{A Y}-B_{N} \sim 58 \mathrm{MeV} \\ \Delta B_{K} \equiv B^{A Y}-B^{S I D} \sim 24 \mathrm{MeV} \\ \quad \text { (averaged value) } \end{array}$
		$\begin{gathered} \hline B_{2 K}^{S I D} \sim 64 \mathrm{MeV} \\ B_{2 K}^{A Y} \sim 104 \mathrm{MeV} \\ \Delta B_{2 K} \sim 40 \mathrm{MeV} \\ \hline B_{3 K}^{S I D} \sim 88 \mathrm{MeV} \end{gathered}$
$\begin{aligned} & \mathrm{DK} \longrightarrow \\ & 2 \mathrm{~K} \longrightarrow \end{aligned}$	2 3 4 5 6 Nucleon Number	$\Delta B_{3 K} \sim 49 \mathrm{MeV}$

Difference of KN interaction

AY K $\cdots \cdots$
2k \ldots.... is enhanced in multi kaonic nuclei

Structure of double kaonic nuclei

$K^{-} K^{-} p p-K^{-} \bar{K}^{0} p n-\bar{K}^{0} \bar{K}^{0} n n\left(J^{\pi}=0^{+}\right)$				Binding energies are similar values for Type I
Model	SIDDHARTA		AY	
	Type I	Type II		
$B[\mathrm{MeV}]$	59.0	54.8	109	
$\Gamma[\mathrm{MeV}]$	64.0	124	143	
${ }^{3} \mathrm{Li} K^{-} K^{-}-{ }^{3} \mathrm{He} K^{-} \bar{K}^{0}{ }^{3} \mathrm{H} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=1 / 2^{+}\right)$				and II
Model	SIDDHARTA		AY	Width of Type II is 2 times larger than Type $>$ Large decay width
	Type I	Type II		
$B[\mathrm{MeV}]$	73.1	72.8	113	
$\Gamma[\mathrm{MeV}]$	58.6	135	160	
${ }^{4} \mathrm{LiK} K^{-} K^{-}-{ }^{4} \mathrm{He} K^{-} \bar{K}^{0}-{ }^{4} \mathrm{H} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=0^{+}\right)$				
Model	SIDDHARTA		AY	
	Type I	Type II		
$B[\mathrm{MeV}]$	103	111	133	
$\Gamma[\mathrm{MeV}]$	60.1	149	187	

Structure of triple kaonic nuclei

$K^{-} K^{-} K^{-} p p-K^{-} K^{-} \bar{K}^{0} p n-K^{-} \bar{K}^{0} \bar{K}^{0} n n\left(J^{\pi}=0^{-}\right)$			
Model	SIDDHARTA		
	Type I	Type II	
$B[\mathrm{MeV}]$	74.7	58.1	133
$\Gamma[\mathrm{MeV}]$	112	163	205
${ }^{3} \mathrm{Li}^{-} K^{-} K^{-}-{ }^{3} \mathrm{He} K^{-} K^{-} \bar{K}^{0}-{ }^{3} \mathrm{H} K^{-}$			${ }^{0}\left(J^{\pi}\right.$
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	98.2	91.4	147
$\Gamma[\mathrm{MeV}]$	97.9	190	245
${ }^{4} \mathrm{Be} K^{-} K^{-} K^{-}-{ }^{4} \mathrm{Li} K^{-} K^{-} K^{0}-{ }^{4} \mathrm{He}^{-} K^{0} K^{0}-{ }^{4} \mathrm{H} K^{0} K^{0} K^{0}\left(J^{\pi}=0^{-}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	134	140	173
$\Gamma[\mathrm{MeV}]$	96.4	219	294

Λ (1405) in multi-kaonic nuclei

$$
\left|[\bar{K} N]_{I=0}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{-} p\right\rangle-\left|\bar{K}^{0} n\right\rangle\right]
$$

$K^{-} K^{-} p p-K^{-} \bar{K}^{0} p n-\bar{K}^{0} \bar{K}^{0} n n\left(J^{\pi}=0^{+}\right)$				$2 \Lambda^{*}$	
Model	SIDDHARTA		AY		$\Lambda^{*} \Lambda^{*} ?$
	Type I	Type II			
$P_{K^{-} K^{-}}$	0.35	0.35	0.34	0.25	
$P_{K-\bar{K}^{0}}$	0.37	0.36	0.36	0.50	
$P_{\text {ROR }}$	0.29	0.29	0.30	0.25	
${ }^{3} \mathrm{LiK}{ }^{-} K^{-} K^{-3} \cdot{ }^{\mathrm{H}} \mathrm{K}^{-} K^{-} \bar{K}^{0} \cdot{ }^{3} \mathrm{H} K^{-} \bar{K}^{0} \mathrm{~K}^{0} \cdot{ }^{3} \cdot{ }^{-} \bar{K}^{0} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=1 / 2^{-}\right)$					
Model	SIDDHARTA		AY	$3 \Lambda^{*}$	
	Type I	Type II			
$P_{K^{-} K^{-} K^{-}}$	0.02	0.01	${ }^{0.05}$	0.125	Λ^{*}
$P_{K-K-R^{0}}$	0.50	${ }^{0.51}$	${ }^{0.46}$	0.375	* ?
$P_{K-K^{0} R^{0}}$	0.47	0.47	0.44	0.375	Λ^{*}
$P^{P^{0} R^{0} K^{0}}$	0.01	0.01	0.05	0.125	

Multi- $\Lambda(1405)$ is not clustered in ground state of multi-KN systems

$K^{-} K^{-} p p-K^{-} \bar{K}^{0} p n-\bar{K}^{0} \bar{K}^{0} n n\left(J^{\pi}=0^{+}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	59.0	54.8	109
$\Gamma[\mathrm{MeV}]$	64.0	124	143
$B_{R}[\mathrm{MeV}]$	$122+i 51.4$	$119+i 98.7$	$166+i 94.5$
$\delta \sqrt{s}[\mathrm{MeV}]$	$60.8+i 25.7$	$29.6+i 24.7$	
$P_{K^{-} K^{-}}$	0.35	0.35	0.34
$P_{K^{-}-\bar{K}^{0}}$	0.37	0.36	0.36
$P_{K^{0} R^{0}}$	0.29	0.29	0.30

${ }^{3} \mathrm{Li} K^{-} K^{-}-{ }^{3} \mathrm{He} K^{-} \bar{K}^{0}-{ }^{3} \mathrm{H} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=1 / 2^{+}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	73.1	72.8	113
$\Gamma[\mathrm{MeV}]$	58.6	135	160
$B_{\bar{K}}[\mathrm{MeV}]$	$127+i 49.3$	$128+i 112$	$164+i 104$
$\delta \sqrt{s}[\mathrm{MeV}]$	$63.4+i 24.7$	$21.4+i 18.6$	
$P_{K^{-} K^{-}}$	0.03	0.02	0.09
$P_{K^{-}} \bar{K}^{0}$	0.38	0.37	0.37
$P_{\bar{K}^{0} \bar{K}^{0}}$	0.60	0.61	0.55

${ }^{4} \mathrm{Li} K^{-} K^{-}-{ }^{4} \mathrm{He} K^{-} \bar{K}^{0}-{ }^{4} \mathrm{H} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=1 / 2^{+}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	103	111	133
$\Gamma[\mathrm{MeV}]$	60.1	149	187
$B_{\bar{K}}[\mathrm{MeV}]$	$130+i 48.0$	$141+i 118$	$159+i 119$
$\delta \sqrt{s}[\mathrm{MeV}]$	$65.1+i 24.0$	$17.6+i 14.7$	
$P_{K^{-}} K^{-}$	0.05	0.04	0.11
$P_{K^{-}} \bar{K}^{0}$	0.90	0.92	0.78
$P_{\bar{K}^{0} \bar{K}^{0}}$	0.05	0.04	0.11

$K^{-} K^{-} K^{-} p p-K^{-} K^{-} \bar{K}^{0} p n-K^{-} \bar{K}^{0} \bar{K}^{0} n n\left(J^{\pi}=0^{+}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	74.7	58.1	133
$\Gamma[\mathrm{MeV}]$	112	163	205
$B_{K}[\mathrm{MeV}]$	$152+i 90.2$	$129+i 132$	$202+i 135$
$\delta \sqrt{s}[\mathrm{MeV}]$	$50.7+i 30.1$	$21.5+i 22.0$	
$P_{K^{-} K^{-}}$	0.47	0.48	0.48
$P_{K^{-}-\bar{K}^{0}}$	0.36	0.35	0.35
$P_{K^{0} R^{0}}$	0.17	0.17	0.17

${ }^{3} \mathrm{Li} K^{-} K^{-} K^{-}{ }^{3} \mathrm{He} K^{-} K^{-} \bar{K}^{0}-{ }^{3} \mathrm{H} K^{-} \bar{K}^{0} \bar{K}^{0}-{ }^{3} n \bar{K}^{0} \bar{K}^{0} \bar{K}^{0}\left(J^{\pi}=1 / 2^{-}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	98.2	91.4	147
$\Gamma[\mathrm{MeV}]$	97.9	190	245
$B_{K}[\mathrm{MeV}]$	$173+i 79.6$	$166+i 155$	$217+i 158$
$\delta \sqrt{s}[\mathrm{MeV}]$	$57.7+i 26.5$	$18.5+i 17.2$	
$P_{K^{-} K^{-} K^{-}}$	0.02	0.01	0.05
$P_{K^{-} K^{-} R^{0}}$	0.50	0.51	0.46
$P_{K^{-} R^{0} R^{0}}$	0.47	0.47	0.44
$P_{K^{0} R^{0} R^{0}}$	0.01	0.01	0.05

$\mathrm{Be}^{-} K^{-} K^{-}{ }^{4} \mathrm{Li} K^{-} K^{-} K^{0}-{ }^{4} \mathrm{He}^{-} K^{0} K^{0}{ }^{4}{ }^{4} \mathrm{H}^{0} K^{0} K^{0}\left(J^{\pi}=0^{-}\right)$			
Model	SIDDHARTA		AY
	Type I	Type II	
$B[\mathrm{MeV}]$	134	140	173
$\Gamma[\mathrm{MeV}]$	96.4	219	294
$B_{\bar{K}}[\mathrm{MeV}]$	$185+i 75.3$	$195+i 171$	$219+i 189$
$\delta \sqrt{s}[\mathrm{MeV}]$	$61.6+i 25.1$	$16.3+i 14.2$	
$P_{K^{-}} K^{-} K^{-}$	0.0007	0.0005	0.006
$P_{K^{-}} K^{-} R^{0}$	0.06	0.05	0.12
$P_{K^{-}-R^{0} R^{0}}$	0.91	0.92	0.79
$P_{\bar{K}^{0} \bar{K}^{0} \bar{K}^{0}}$	0.03	0.03	0.08

NN interaction

- AV^{\prime} potential: $\{1, \sigma . \sigma, \tau . \tau, \sigma . \sigma \tau . \tau\}$
R.B.Wiringa, S.C.Pieper, PRL89,182501 (2002).

	AV4'		Expt.
	$B[\mathrm{MeV}]$	$\sqrt{\left\langle r^{2}\right\rangle}[\mathrm{fm}]$	$B[\mathrm{MeV}]$
${ }^{2} \mathrm{H}$	2.24	2.02	2.22
${ }^{3} \mathrm{H}$	8.99	1.67	8.48
${ }^{4} \mathrm{He}$	32.11	1.39	28.30
${ }^{6} \mathrm{He}$	32.22	2.66	29.27
${ }^{6} \mathrm{Li}$	35.81	2.43	31.99

Pole position of $\Lambda(1405)$ and energy dependence of potential

Hyodo, Weise, PRC77, 035204 (2008).

Phenomenological potential
Akaishi, Yamazaki, PRC65, 04400(2002). Shevchenko, PRC85, 034001(2012).
Λ (1405), one pole Energy independent

Chiral SU(3) dynamics

Kaiser, Siegel, Weise, NPA594, 325(1995).
Oset, Ramos, NPA635, 99(1998).
Hyodo, Jido, PPNP67, 55(2012).
Λ (1420), two pole
Energy dependent

This difference is enhanced in kaon-nucleus quasi-bound states

N and K distribution

Dependence on NN interaction

We investigate the $N N$ interaction dependence by using AV4', ATS3, and Minnesota potential model, which well reproduce the binding energy of s-shell nuclei

Dependence on NN interaction

Binding energy and decay width

> Binding energy and decay width are not sensitive to NN interaction model

Nucleon distribution

> AV4' and ATS3 potential with strong repulsive core produce similar density distribution, but the central density for Minnesota potential with soft core become high.

Density distribution of $K^{-p p-K^{0 b a r} p n}$

 Nucleon distribution from C.M. of NN

Central density for SIDDHARTA potential is slightly smaller than density for AY-potential

Density distribution of $K^{-} p p n-K^{0 b a r} p n n$

$>$ Central nucleon density $\rho(0) \sim 0.6 \mathrm{fm}^{-3}$ is two times larger than ${ }^{3} \mathrm{He}$, but smaller than the density $\rho(0)=1.4 \mathrm{fm}^{-3}$ predicted by g-matrix effective KN and NN interactions

Dote, et. al., PLB590, 51(2004).

Density distribution of $K^{-p p n n-K^{0 b a r} p n n n ~}$

Nucleon distribution from C.M. of NNNN

$>$ Central nucleon density $\rho(0)^{\sim} 0.7 \mathrm{fm}^{-3}$ is 1.5 times larger than ${ }^{4} \mathrm{He}$

Density distribution of K-pppnnn-K0barppnnnn

$\mathrm{J}^{\pi}=1-$

Structure of $K^{\text {bar }} N N$ with $J^{\pi}=0^{-}$

$K^{-} p p-\bar{K}^{0} p n\left(J^{\pi}=0^{-}\right)$					> Coulomb splitting is	
Model	SIDDHARTA			AY		
	Type I	Type II	Type III			
$B[\mathrm{MeV}]$	27.9	26.1	27.3	48.7	small ($\sim 0.5 \mathrm{MeV}$)	
$\Gamma[\mathrm{MeV}]$	30.9	59.3	30.5	61.9	ing en	
$\delta \sqrt{s}[\mathrm{MeV}]$ $\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$ $\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$ $\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$ $\sqrt{\left\langle r_{K}^{2}\right\rangle}[\mathrm{fm}]$		202-i23.7	-61.5-i24.2			
		2.07	2.16	1.84	almost same between	
		1.73	1.81	1.55	Type I, II, and III, but	
		- 1.08	1.12	0.958	width of Type II is two	
		(1. 10	1.15	0.988	times larger than Type	
$K^{-} p n-\bar{K}^{0}{ }_{n n}\left(J^{\pi}=0^{-}\right)$						
Model	K- ${ }_{\text {a }}$			AY		
				ential is		
$B[\mathrm{MeV}]$			27.0		48.1	The radii for AY-
$\Gamma[\mathrm{MeV}]$			31.0	61.6	potential become	
$\delta \sqrt{s}[\mathrm{MeV}]$			-60.8-i24.7		smaller than	
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$			2.19	1.85	SIDDHARTA potential	
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.82	1.75	1.83	1.56		
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.13	1.09	1.14	0.963		
$\sqrt{\left\langle r_{K}^{2}\right\rangle[\mathrm{fm}]}$	1.15	1.11	1.16	0.993		
2016/10/2						

Structure of $K^{\text {bar }} N N N N$ with $J^{\pi}=0^{-}$

${ }^{4} \mathrm{LiK}^{-}-{ }^{4} \mathrm{He} \mathrm{K}^{0}\left(J^{\pi}=0^{-}\right)$					Coulomb splitting is arge ($\sim 2 \mathrm{MeV}$), since
Model	SIDDHARTA			AY	
	Type I	Type II	Type III		
$B[\mathrm{MeV}]$	67.9	72.7	61.6	85.2	Coulomb effect is
$\Gamma[\mathrm{MeV}]$	28.3	74.1	23.1	86.5	repulsive for ${ }^{4} \mathrm{HeK}^{0}$
$\delta \sqrt{s}[\mathrm{MeV}]$	-67.6-i23.0	$-18.4-i 15.0$	-77.0-i19.2		repulsive for ${ }^{4} \mathrm{HeK}^{0}$,
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	1.98	1.91	2.01	2.07	but attractive for
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.83	1.72	1.90	1.81	${ }^{4} \mathrm{HeK}^{-}$
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.22	1.18	1.24	1.27	$>$ Binding energy is
$\sqrt{\left\langle r_{K}^{2}\right\rangle}[\mathrm{fm}]$	1.22	1.12	1.28	1.14	about 60-75 MeV for
	${ }^{4} \mathrm{He} K^{-}{ }^{4} \mathrm{H} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$				SIDDHARTA potential
Model	SIDDHARTA			AY	\rangle width of Type II is
	Type I	Type II	Type III		three times larger
$B[\mathrm{MeV}]$	69.6	75.5	63.4	87.4	than Type I and III
$\Gamma[\mathrm{MeV}]$	28.0	74.5	23.0	87.2	
$\delta \sqrt{s}[\mathrm{MeV}]$	-68.7-i22.4	-19.1-i14.9	$-78.3-i 18.8$		AY-potential is about
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	1.96	1.89	1.99	2.04	AY-potential is about
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.82	1.71	1.89	1.79	86 MeV
$\sqrt{\left\langle r_{N}^{2}\right\rangle}$ [fm]	1.21	1.17	1.23	1.26	
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.21	1.11	1.28	1.13	
2016/10/24					31

Gamow vector

$$
\begin{gathered}
\langle\psi \mid \psi\rangle=\int d r|\psi(r)|^{2}=1 \\
G\langle\psi \mid \psi\rangle_{G}=\int d r \psi(r)^{2}=1 \\
\left\langle r^{2}\right\rangle=\int d r r^{2}|\psi(r)|^{2} \\
\left\langle r^{2}\right\rangle_{G}=\int d r r^{2} \psi_{G}(r)^{2} \\
\left\langle r^{2}\right\rangle^{2}=\left\langle r^{2}\right\rangle_{G}=\frac{1}{2 \kappa^{2}} \quad \text { (bound state). } \\
\left\langle r^{2}\right\rangle_{G}=\frac{1}{2 \kappa^{2}+4 i \kappa \gamma-2 \gamma^{2}} \quad \text { (quasibound state). }
\end{gathered}
$$

Correlated Gaussian basis

Varga, Suzuki, Phys. Rev C52 (1995) 2885.

$$
\Psi=\sum_{i=1}^{K} c_{i} \phi_{i}, \quad \phi_{i}=\mathcal{A}\left\{e^{-\frac{1}{2} \widetilde{x} A_{i} x} \chi_{i J M} \eta_{i T M_{t}}\right\}
$$

$A_{i}:(N-1) \times(N-1)$ matrix (paramaters of coordinates)
$\boldsymbol{x}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N-1}\right\}, \chi_{i J M}$: spin function, $\eta_{\text {iTM }_{t}}$: isospin function

- Correlated Gaussian basis represent the total angular momentum $L=0$, but higher partial wave for each \boldsymbol{x}_{i} are included by off-diagonal component of A_{i}.
- Matrix elements are analytically calculable for N -body systems
- Functional form of the correlated Gaussian remains unchanged under the coordinate transformation

$$
\mathbf{y}=T \mathbf{x} \Rightarrow \tilde{\mathbf{y}} B \mathbf{y}=\tilde{\mathbf{x}} \tilde{T} B T \mathbf{x}
$$

Stochastic variational method

- To obtain the well variational basis, we increase the basis size one-by-one by searching for the best variational parameter A_{i} among many random trials
- Diagonalize full complex Hamiltonian by using basis optimized for the real part of the Hamiltonian

Correlated Gaussian basis

Varga, Suzuki, Phys. Rev C52 (1995) 2885.

$$
\Psi=\sum_{i=1}^{K} c_{i} \phi_{i}, \quad \phi_{i}=\mathcal{A}\left\{e^{-\frac{1}{2} \widetilde{x} A_{i} x} \chi_{i J M} \eta_{i T M_{t}}\right\}
$$

$A_{i}:(N-1) \times(N-1)$ matrix (paramaters of coordinates)
$\boldsymbol{x}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N-1}\right\}, \chi_{i J M}$: spin function, $\eta_{\text {iTM }_{t}}$: isospin function

- Correlated Gaussian basis represent the total angular momentum $L=0$, but higher partial wave for each \boldsymbol{x}_{i} are included by off-diagonal component of A_{i}.
- Matrix elements are analytically calculable for N -body systems
- Functional form of the correlated Gaussian remains unchanged under the coordinate transformation

$$
\mathbf{y}=T \mathbf{x} \Rightarrow \tilde{\mathbf{y}} B \mathbf{y}=\tilde{\mathbf{x}} \tilde{T} B T \mathbf{x}
$$

Stochastic variational method

- To obtain the well variational basis, we increase the basis size one-by-one by searching for the best variational parameter A_{i} among many random trials
- Diagonalize full complex Hamiltonia
by using basis optimized for the real part of the Hamiltonian

$K^{\text {bar }} N$ interactions

SIDDHARTA potential K.Miyahara, T.Hyodo, PRC 93 (2016) 1, 015201.
> Reproduce the scattering amplitude by chiral SU(3) dynamics using driving interaction at NLO Y.Ikeda, T.Hyodo, W.Weise, NPA881 (2012) 98.

Chiral SU(3) dynamics
Description of $S=-1, K^{b a r} N$ s-wave scattering \checkmark Interaction \leftarrow chiral symmetry
\checkmark Amplitude \leftarrow unitarity in coupled channel

Kaiser, Siegel, Weise, NPA594, 325(1995).
Oset, Ramos, NPA635, 99(1998).
Hyodo, Jido, PPNP67, 55(2012).

FIG. 1. (Color online) Strength of the $\bar{K} N$ potential $V_{\bar{K} N}^{I=0}(r=0, E)$ on the complex energy plane.
$K^{-} p p-\bar{K}^{0} p n\left(J^{\pi}=0^{-}\right)$

Model	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	27.9	26.1	27.3	48.7
$\Gamma[\mathrm{MeV}]$	30.9	59.3	30.5	61.9
$B_{\bar{K}}[\mathrm{MeV}]$	$61.0+i 25.0$	$60.4+i 47.4$	$60.1+i 24.7$	$77.7+i 41.8$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-61.0-i 25.0$	$-30.2-i 23.7$	$-61.5-i 24.2$	
$P_{K^{-}}$	0.65	0.65	0.65	0.64
$P_{\bar{K}^{0}}$	0.35	0.35	0.35	0.36
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	2.16	2.07	2.16	1.84
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.80	1.73	1.81	1.55
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.12	1.08	1.12	0.958
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}$ [fm]	1.14	1.10	1.15	0.988
$\sqrt{\left\langle r_{N}^{2}\right\rangle}{ }_{G}[\mathrm{fm}]$	$1.10-i 0.119$	$1.02-i 0.182$	$1.10-i 0.121$	0.918-i0.153
$\sqrt{\left\langle r_{K}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.11-i 0.171$	$1.00-i 0.256$	$1.11-i 0.173$	$0.941-i 0.182$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$117+i 28.8$	$124+i 53.1$	$116+i 28.7$	$102+i 31.4$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-113-i 33.7$	$-120-i 63.9$	$-112-i 33.7$	$-102-i 47.0$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$74.3+i 18.4$	$76.3+i 33.1$	$73.7+i 18.2$	$63.1+i 15.5$
$\langle V\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$-62.0-i 19.1$	$-64.3-i 35.6$	$-61.3-i 19.0$	$-48.6-i 21.6$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	-44.1-i9.76	-41.9-i16.4	$-43.9-i 9.50$	$-64.0-i 9.24$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-193-i 14.3$	$-201-i 27.2$	$-191-i 14.0$	$-186-i 26.0$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	-8.67-i1.19	$-10.8-i 2.43$	$-8.52-i 1.20$	$-8.26-i 4.95$

Model	$K^{-} p n-\bar{K}^{0} n n\left(J^{\pi}=0^{-}\right)$			
	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	27.6	25.3	27.0	48.1
$\Gamma[\mathrm{MeV}]$	31.6	59.4	31.0	61.6
$B_{\bar{K}}[\mathrm{MeV}]$	$60.2+i 25.6$	$58.7+i 47.5$	$59.2+i 25.1$	$76.3+i 41.5$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-60.2-i 25.6$	$-29.4-i 23.8$	$-60.8-i 24.7$	
$P_{K^{-}}$	0.38	0.38	0.38	0.37
$P_{\bar{K}^{0}}$	0.62	0.62	0.62	0.63
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	2.18	2.10	2.19	1.85
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.82	1.75	1.83	1.56
$\sqrt{\left\langle r_{N}^{2}\right\rangle}$ [fm]	1.13	1.09	1.14	0.963
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.15	1.11	1.16	0.993
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.11-i 0.123$	$1.03-i 0.187$	$1.11-i 0.125$	0.923-i0.155
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.11-i 0.176$	$1.01-i 0.263$	$1.12-i 0.179$	$0.946-i 0.185$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$67.6+i 20.6$	$81.4+i 34.9$	$78.5+i 19.4$	$65.3+i 16.1$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-44.5-i 10.2$	$-69.9-i 38.0$	$-66.7-i 20.4$	$-51.3-i 22.6$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$112+i 28.7$	$118+i 52.2$	$111+i 28.5$	$99.5+i 30.8$
$\langle V\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$-107-i 33.3$	$-112-i 62.2$	$-106-i 33.0$	$-97.3-i 45.8$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-44.5-i 10.2$	$-42.2-i 16.7$	$-44.2-i 9.93$	$-64.3-i 9.40$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-194-i 14.7$	$-201-i 27.4$	-192-i14.4	$-186-i 25.9$
$\left\langle V_{K N}^{I=1}\right\rangle[\mathrm{MeV}]$	-8.39-i1.14	-10.4-i2.34	$-8.22-i 1.15$	-8.10-i4.86

	${ }^{3} \mathrm{He} K^{-}{ }^{3} \mathrm{H} \bar{K}^{0}\left(J^{\pi}=1 / 2^{-}\right)$			
Model	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	45.3	49.7	42.0	72.6
$\Gamma[\mathrm{MeV}]$	25.5	69.4	21.7	78.6
$B_{\bar{K}}[\mathrm{MeV}]$	$70.4+i 20.7$	$78.4+i 55.9$	$64.8+i 17.5$	$94.3+i 51.9$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-70.4-i 20.7$	$-26.1-i 18.6$	$-75.7-i 18.2$	
$P_{K^{-}}$	0.53	0.53	0.53	0.51
$P_{\bar{K}^{0}}$	0.47	0.47	0.47	0.49
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	1.99	1.90	2.01	1.87
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.79	1.68	1.83	1.63
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.17	1.11	1.18	1.09
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle[\mathrm{fm}]}$	1.17	1.08	1.21	1.03
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.16-i 0.0539$	$1.09-i 0.0952$	$1.18-i 0.0575$	$1.07-i 0.124$
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.15-i 0.115$	$1.02-i 0.196$	$1.19-i 0.118$	0.996-i0.176
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$114+i 17.4$	$126+i 42.2$	$109+i 15.6$	$107+i 27.6$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-118-i 22.4$	$-135-i 54.0$	$-112-i 20.9$	$-114-i 44.6$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$103+i 15.9$	$113+i 39.8$	$98.6+i 13.7$	$101+i 26.1$
$\langle V\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$-105-i 20.2$	$-118-i 50.0$	$-99.5-i 18.3$	$-107-i 42.1$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-39.0-i 3.56$	$-36.0-i 12.7$	$-37.6-i 1.05$	$-59.6-i 6.33$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-170-i 9.20$	$-188-i 26.6$	$-160-i 7.07$	$-189-i 26.3$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	$-22.8-i 3.58$	$-34.0-i 8.07$	$-20.8-i 3.80$	-21.7-i13.0

Model	${ }^{4} \mathrm{Li} K^{--}{ }^{4} \mathrm{He} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$			
		SIDDHARTA		AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	67.9	72.7	61.6	85.2
$\Gamma[\mathrm{MeV}]$	28.3	74.1	23.1	86.5
$B_{\bar{K}}[\mathrm{MeV}]$	$67.6+i 23.0$	$73.5+i 59.9$	$57.6+i 17.5$	$85.2+i 55.2$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-67.6-i 23.0$	$-18.4-i 15.0$	$-77.0-i 19.2$	
$P_{K^{-}}$	0.08	0.06	0.07	0.16
$P_{\bar{K}^{0}}$	0.92	0.94	0.93	0.84
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	1.98	1.91	2.01	2.07
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.83	1.72	1.90	1.81
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.22	1.18	1.24	1.27
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}$ [fm]	1.22	1.12	1.28	1.14
$\sqrt{\left\langle r_{N}^{2}\right\rangle}{ }_{G}[\mathrm{fm}]$	$1.21-i 0.0324$	$1.17-i 0.0627$	$1.24-i 0.0431$	$1.26-i 0.125$
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.19-i 0.123$	$1.05-i 0.201$	$1.26-i 0.139$	$1.09-i 0.210$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$32.6+i 6.75$	$26.7+i 16.2$	$30.7+i 1.60$	$50.3+i 7.22$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-25.1-i 6.74$	$-20.0-i 15.9$	$-23.2-i 2.51$	$-42.3-i 12.0$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$214+i 27.8$	$240+i 66.0$	$200+i 27.6$	$183+i 52.7$
$\langle V\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$-265-i 38.4$	$-300-i 94.3$	$-245-i 38.5$	$-232-i 88.3$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-24.8-i 3.66$	$-20.2-i 9.13$	$-23.9+i 0.218$	$-43.9-i 2.82$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-132-i 7.68$	$-136-i 20.4$	$-118-i 4.57$	$-158-i 22.1$
$\left\langle V_{K N}^{I=1}\right\rangle[\mathrm{MeV}]$	-46.6-i6.49	$-67.2-i 16.7$	$-39.1-i 7.00$	$-35.3-i 21.2$

${ }^{4} \mathrm{He} K^{-}{ }^{4} \mathrm{H} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$

Model	Type I	SIDDHARTA Type II	Type III	AY
$B[\mathrm{MeV}]$	69.6	75.5	63.4	87.4
$\Gamma[\mathrm{MeV}]$	28.0	74.5	23.0	87.2
$B_{K}[\mathrm{MeV}]$	$68.7+i 22.4$	$76.4+i 59.7$	$58.8+i 17.1$	$86.5+i 55.6$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-68.7-i 22.4$	$-19.1-i 14.9$	$-78.3-i 18.8$	
$P_{K^{-}}$	0.93	0.94	0.93	0.86
$P_{\bar{K}^{0}}$	0.07	0.06	0.07	0.14
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	1.96	1.89	1.99	2.04
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	1.82	1.71	1.89	1.79
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.21	1.17	1.23	1.26
$\sqrt{\left\langle r_{K}^{2}\right\rangle}[\mathrm{fm}]$	1.21	1.11	1.28	1.13
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.21-i 0.0338$	$1.16-i 0.0633$	$1.23-i 0.0441$	$1.24-i 0.120$
$\sqrt{\left\langle r_{K}^{2}\right\rangle}[\mathrm{fm}]$	$1.19-i 0.120$	$1.04-i 0.196$	$1.26-i 0.136$	$1.13-i 0.208$
$\langle T\rangle_{G}^{K-}[\mathrm{MeV}]$	$216+i 28.1$	$244+i 66.6$	$202+i 27.9$	$188+i 53.4$
$\langle V\rangle_{G}^{K-}[\mathrm{MeV}]$	$-269-i 39.1$	$-306-i 95.7$	$-250-i 39.3$	$-241-i 90.0$
$\langle T\rangle_{G}^{K_{0}^{0}}[\mathrm{MeV}]$	$30.5+i 5.50$	$25.1+i 14.7$	$28.6+i 0.588$	$47.0+i 6.54$
$\langle V\rangle_{G}^{K_{0}}[\mathrm{MeV}]$	$-23.0-i 5.54$	$-18.5-i 14.2$	$-21.2-i 1.63$	$-38.7-i 10.9$
$\langle V\rangle_{G}^{K-K^{0}}[\mathrm{MeV}]$	$-24.4-i 3.00$	$-19.9-i 8.71$	$-23.2+i 0.893$	$-42.7+i 2.64$
$\left\langle V_{K=}^{I=0}\right\rangle[\mathrm{MeV}]$	$-130-i 7.27$	$-136-i 20.3$	$-117-i 4.18$	$-157-i 21.9$
$\left\langle V_{K N}^{I=1}\right\rangle[\mathrm{MeV}]$	$-46.7-i 6.72$	$-68.5-i 17.0$	$-39.5-i 7.35$	$-36.1-i 21.7$
$2016 / 10 /\langle 4$				

Model	${ }^{6} \mathrm{Be} K^{--}{ }^{6} \mathrm{Li} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$			
		SIDDHARTA		AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	68.0	76.9	62.7	101
$\Gamma[\mathrm{MeV}]$	23.9	73.4	19.5	86.4
$B_{\bar{K}}[\mathrm{MeV}]$	$75.0+i 18.3$	$87.6+i 59.5$	$65.8+i 13.4$	$113+i 56.5$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-75.0-i 18.3$	$-14.6-i 9.92$	$-85.0-i 15.0$	
$P_{K^{-}}$	0.73	0.75	0.73	0.65
$P_{\bar{K}^{0}}$	0.27	0.25	0.27	0.35
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	2.85	2.83	2.87	2.57
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	2.56	2.47	2.59	2.29
$\sqrt{\left\langle r_{N}^{2}\right\rangle}$ [fm]	1.85	1.83	1.86	1.67
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.54	1.48	1.66	1.44
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.85-i 0.0179$	$1.82-i 0.0329$	$1.86-i 0.0148$	$1.66-i 0.0728$
$\sqrt{\left\langle r_{K}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.62-i 0.0764$	$1.50-i 0.117$	1.65-i0.0886	$1.42-i 0.167$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$185+i 18.9$	$210+i 46.1$	$177+i 19.7$	$181+i 30.6$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-220-i 28.1$	$-257-i 67.6$	$-210-i 30.6$	$-221-i 57.4$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$80.4+i 4.38$	$76.8+i 24.1$	$75.8-i 2.32$	$107+i 15.3$
$\langle V\rangle_{G}^{K^{0}}[\mathrm{MeV}]$	$-84.4-i 7.14$	$-82.8-i 29.5$	$-79.6+i 0.994$	-117-i29.1
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-29.3+i 0.0277$	$-24.7-i 9.71$	$-26.5+i 4.52$	$-51.9-i 2.69$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-137-i 6.30$	$-152-i 23.4$	$-123-i 3.17$	$-178-i 24.8$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	$-31.3-i 5.64$	$-51.3-i 13.3$	$-28.5-i 6.59$	$-30.7-i 18.4$

Model	${ }^{6} \mathrm{Li} K^{--}{ }^{6} \mathrm{He} \bar{K}^{0}\left(J^{\pi}=0^{-}\right)$			
	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	68.7	77.0	63.2	102
$\Gamma[\mathrm{MeV}]$	24.0	73.2	19.4	86.4
$B_{\bar{K}}[\mathrm{MeV}]$	$74.4+i 18.6$	$86.2+i 59.6$	$65.0+i 13.5$	$111+i 56.5$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-74.4-i 18.6$	$-14.4-i 9.93$	$-84.5-i 15.1$	
$P_{K^{-}}$	0.36	0.35	0.36	0.39
$P_{\bar{K}^{0}}$	0.64	0.65	0.64	0.61
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	2.83	2.80	2.85	2.57
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	2.54	2.46	2.58	2.28
$\sqrt{\left\langle r_{N}^{2}\right\rangle}$ [fm]	1.83	1.81	1.84	1.66
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.63	1.53	1.66	1.44
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.83-i 0.0200$	$1.80-i 0.0346$	$1.84-i 0.0195$	$1.66-i 0.0722$
$\sqrt{\left\langle r_{K}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.62-i 0.0756$	$1.49-i 0.119$	$1.65-i 0.0880$	$1.42-i 0.167$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$101+i 7.71$	$104+i 26.5$	$96.4+i 3.10$	$117+i 18.1$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-111-i 11.7$	$-117-i 34.4$	$-105-i 8.02$	$-131-i 33.8$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$165+i 15.9$	$184+i 43.8$	$158+i 14.5$	$171+i 27.7$
$\langle V\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$-194-i 23.6$	$-221-i 62.5$	$-184-i 23.4$	$-206-i 52.4$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-30.1-i 0.369$	$-25.6-i 9.99$	$-27.4+i 4.14$	$-52.3-i 2.82$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-139-i 6.56$	$-154-i 23.8$	$-125-i 3.36$	$-178-i 24.9$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	$-30.8-i 5.46$	$-49.7-i 12.9$	-27.8-i6.37	$-30.5-i 18.3$

Model	${ }^{6} \mathrm{Be} K^{-}{ }^{6} \mathrm{Li} \bar{K}^{0}\left(J^{\pi}=1^{-}\right)$			
	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	69.5	75.6	63.4	91.0
$\Gamma[\mathrm{MeV}]$	26.7	73.5	21.8	86.2
$B_{\bar{K}}[\mathrm{MeV}]$	$69.1+i 21.8$	$76.8+i 60.7$	$59.1+i 16.1$	$93.8+i 56.1$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-69.1-i 21.8$	$-12.8-i 10.1$	$-79.4-i 18.3$	
$P_{K^{-}}$	0.07	0.06	0.06	0.14
$P_{\bar{K}^{0}}$	0.93	0.94	0.94	0.86
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	3.00	2.97	3.01	2.87
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	2.57	2.50	2.61	2.41
$\sqrt{\left\langle r_{N}^{2}\right\rangle}[\mathrm{fm}]$	1.94	1.92	1.95	1.85
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.55	1.48	1.59	1.41
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.94-i 0.0147$	$1.91-i 0.0163$	$1.95-i 0.0212$	$1.84-i 0.0690$
$\sqrt{\left\langle r_{K}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.54-i 0.0809$	$1.43-i 0.136$	$1.58-i 0.0880$	$1.38-i 0.143$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$30.7+i 5.41$	$25.0+i 16.0$	$28.6+i 0.0899$	$52.3+i 7.93$
$\langle V\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$-23.7-i 5.54$	$-18.8-i 15.5$	$-21.7-i 1.27$	$-44.7-i 13.1$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$237+i 23.6$	$261+i 58.1$	$225+i 23.0$	$215+i 40.5$
$\langle V\rangle_{G}^{K^{0}}[\mathrm{MeV}]$	$-290-i 34.1$	$-324-i 86.3$	$-273-i 34.0$	$-272-i 74.9$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-23.0-i 2.73$	$-18.5-i 8.93$	$-21.8+i 1.28$	$-42.0-i 3.56$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-122-i 6.85$	$-129-i 20.1$	$-110-i 3.70$	$-155-i 21.7$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	$-43.8-i 6.51$	$-64.5-i 16.7$	$-37.3-i 7.21$	$-35.8-i 21.5$

Model	${ }^{6} \mathrm{Li} K^{-}-{ }^{6} \mathrm{He} \bar{K}^{0}\left(J^{\pi}=1^{-}\right)$			
	SIDDHARTA			AY
	Type I	Type II	Type III	
$B[\mathrm{MeV}]$	71.5	78.8	65.5	93.7
$\Gamma[\mathrm{MeV}]$	26.3	74.0	21.7	86.7
$B_{\bar{K}}[\mathrm{MeV}]$	$70.6+i 21.0$	$80.2+i 60.5$	$60.7+i 15.7$	$95.7+i 56.3$
$\delta \sqrt{s}[\mathrm{MeV}]$	$-70.6-i 21.0$	$-13.4-i 10.1$	$-81.0-i 17.8$	
$P_{K^{-}}$	0.94	0.95	0.94	0.87
$P_{\bar{K}^{0}}$	0.06	0.05	0.06	0.13
$\sqrt{\left\langle r_{N N}^{2}\right\rangle}[\mathrm{fm}]$	2.99	2.96	3.00	2.85
$\sqrt{\left\langle r_{K N}^{2}\right\rangle}[\mathrm{fm}]$	2.56	2.49	2.60	2.40
$\sqrt{\left\langle r_{N}^{2}\right\rangle}$ [fm]	1.94	1.91	1.94	1.85
$\sqrt{\left\langle r_{\bar{K}}^{2}\right\rangle}[\mathrm{fm}]$	1.55	1.47	1.59	1.41
$\sqrt{\left\langle r_{N}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.93-i 0.0150$	$1.91-i 0.0155$	$1.94-i 0.0216$	$1.84-i 0.0680$
$\sqrt{\left\langle r_{K}^{2}\right\rangle_{G}}[\mathrm{fm}]$	$1.53-i 0.0791$	$1.42-i 0.131$	$1.58-i 0.0865$	$1.37-i 0.141$
$\langle T\rangle_{G}^{K^{-}}[\mathrm{MeV}]$	$238+i 23.7$	$264+i 58.6$	$227+i 23.2$	$219+i 41.0$
$\left.\langle V\rangle_{G}^{K^{-}}{ }^{-1} \mathrm{MeV}\right]$	$-294-i 34.5$	$-331-i 87.5$	$-278-i 34.7$	$-279-i 76.3$
$\langle T\rangle_{G}^{\bar{K}^{0}}[\mathrm{MeV}]$	$29.0+i 4.23$	$23.6+i 14.7$	$26.8-i 0.890$	$49.3+i 7.21$
$\langle V\rangle_{G}^{K^{0}}[\mathrm{MeV}]$	$-21.9-i 4.46$	$-17.6-i 14.2$	$-20.0-i 0.454$	$-41.7-i 12.0$
$\langle V\rangle_{G}^{K^{-} \bar{K}^{0}}[\mathrm{MeV}]$	$-22.6-i 2.04$	$-18.2-i 8.57$	$-21.2+i 1.98$	$-41.1-i 3.36$
$\left\langle V_{\bar{K} N}^{I=0}\right\rangle[\mathrm{MeV}]$	$-120-i 6.39$	$-129-i 20.0$	$-108-i 3.27$	$-154-i 21.5$
$\left\langle V_{\bar{K} N}^{I=1}\right\rangle[\mathrm{MeV}]$	-43.7-i6.75	$-65.6-i 17.0$	$-37.5-i 7.61$	$-36.4-i 21.9$

