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Density  

 ≈ 0 ⋯ ≈ 10𝜌0 
 

Composition 
• Nucleons + leptons 
•  . . .  + mesons, hyperons 
• quarks + gluons + leptons 

 

Structure & correlation 
• uniform 
• crystal 
• pasta 
• amorphous 
• pairing 
• ….. 

Matter  of neutron stars 
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EOS and structure of neutron stars 

Tolman-Oppenheimer-Volkoff (TOV) eq. gives density profile 
of isotropic material in static gravitational equilibrium. 
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Density dependence of pressure (EOS)

Relativistic  
correction 

EOS  (relation between density 𝜌 and pressure  𝑃)   
determines the neutron star structure. 

Balance of pressure and gravity 

Matter with stiff EOS can 
sustain heavy neutron 
stars and soft EOS cannot. 



First-order phase transition and EOS 

• Single component congruent 

                 (e.g. water) 

  Maxwell construction satisfies the 

  Gibbs cond. TI=TII, PI=PII, mI=mII. 

• Many components non-congruent 

                                    (e.g. water+ethanol) 

Gibbs cond.TI=TII, Pi
I=Pi

II, mi
I=mi

II. 

No Maxwell construction !   

This is the case for nuclear matter ! 
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• Many charged components 
                                     (nuclear matter) 

Gibbs cond. TI=TII,  mi
I=mi

II. 

No Maxwell construction ! 

No constant pressure !  
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Explicit dependence 
on 𝒓 by Coulomb int. 
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Mixed phases in compact stars 

• Low-density nuclear matter 
liquid-gas 
neutron drip 

• High density matter 
meson condensation 
hyperon mixture (?)    
hadron-quark  



General behavior of neutron star  matter 
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beta equilibrium: 

Reimei WS @ Inha 
ρ𝐵 = baryon number density 

• Total energy density is monotonically 
increasing function due to the electron. 

 
• Beta-equilibrium matter  is neutron-rich. 
 
• Proton fraction increases with density. 

Low-density nuclear matter 

Slve the following conditions of n p e matter 

in chemical equilibrium 
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• with fixed 𝜌𝐵 = 𝜌𝑝 + 𝜌𝑛, min point  

of 𝜀𝑝 + 𝜀𝑛 + 𝜀e exists at a smallYp   

 neutron-rich matter. 

 

• energy density of baryon increases 

more rapidly than electron  proton 

fraction increases with density. 

  （characteristics of uniform matter） 

Model-independent explanation 

B fixed 

Yp=0.5 

N 
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B  

In anyway, N is stiffer than e 

𝜀𝑝 + 𝜀𝑛 

𝜀𝑒 

𝜀𝑝 + 𝜀𝑛 

𝜀𝑒 

minimum 

Even if 𝑚𝑁 may be large  
or small, 𝑑𝜀𝑁/𝑑𝜌𝑁 is large. 



Neutron-rich 
nuclei in 
electron sea 

Neutron-rich 
nuclei in 
neutron sea 

compression 

uniform 

First, electrons degenerate. 
 electron energy depends on the density.   

  𝑌𝑒  and 𝑌𝑝 decrease.   Baryon energy is 

not directly dependent on the density. 
 

As 𝑌𝑝decreases, neutrons begin to drip (●) 

  Neutrons found space to escape. 

  𝑌𝑒  and 𝑌𝑝 decrease rapidly. 

 

As neutrons degenerate, increase of  𝑌𝑛  

(decrease of 𝑌𝑝 ) is suppressed.   

???  

  at last, protons degenerate. (●) 

𝑌𝑝 starts to increase 

       in Uniform matter.  

From inhomogeneous to uniform 

𝑌 𝑒
 &

 𝑌
𝑝

 

Not clear yet 
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Saturation property of symmetric 

nuclear matter : minimum energy 

𝐸/𝐴 ≈ −16 MeV at  𝜌𝐵 ≈ 0.16 fm−3 . 

Binding energies ↓,  

proton fractions ↓,  

and density profiles →  

of nuclei are well 

reproduced. 

RMF + Thomas-Fermi  model 

Nucleons interact with each other 
via coupling with 𝜎, 𝜔, 𝜌 mesons. 
Simple but realistic enough. 
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釣り合い条件

Inhomogeneous nuclear matter 

Another aspect: “structured mixed phase” in the first-order phase transition 

Regular structure by the balance between 

Coulomb repulsion and surface tension. 

(cf.  water: neutral  no regular structure ) 
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[Ravenhall et al, PRL50(1983)2066] 



Result of fully 3D calculation 
by RMF+Thomas-Fermi 

“droplet”  
[fcc] 

ρB = 0.012 fm-3 

“rod”  
[honeycomb] 
0.024 fm-3 

“slab” 
 

0.05 fm-3 

“tube” 
[honeycomb] 

0.08 fm-3 

“bubble”  
[fcc] 

0.094 fm-3 

Symmetric nuclear matter 

Yp  = Z/A = 0.5 

(supernova matter) 
proton 

electron 

[Phys.Lett. B713 (2012) 284] 
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Confirmed the appearance of pasta structures. 



Beta equilibrium case  

(neutron star crust) 

Crystalline structures bcc & fcc. 
Rod phase appears. 

[Phys. Rev. C 88, 025801] 
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(a) 

(b) 

(c) 
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Proton fractions of uniform 
matter and inhomogeneous 
matter are different. 
 
Uniform: locally neutral 
Inhomog:  can be charged 

Low density  weaker Coulomb 
 Larger inter-nuclear distance  
 Local charge neutrality disappears 

Beta-equilibrium case 

by Wigner-Seitz approx 



(2) Kaon condensation and htperons 
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From a Lagrangian 
with chiral symmetry 

K single particle energy (model-independent form) 

Threshold condition of condensation 

[Phys. Rev. C 73, 035802] 
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Kaonic pasta phases    
    --- Fully 3D calculation  

p K 

0.45fm−3
 0.60fm−3

 

0.70fm−3
 0.72fm−3

 

0.75fm−3
 

p K 

[unpublished yet] 
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Hyperon versus kaon in uniform matter 

Without kaon, in the present 
parameter set, firstly appears Λ 
and then Ξ−in the case of 
uniform. 
 
By the appearance of Kaon,  
Ξ− disappears and Λ decreases. 



Density profile in a spherical WS cell.  
 
Λ(orange line near the bottom) and 
Kaon(purple) avoid with each other. 
 
 Inhomogeneous structure may 
enhance (moderate the suppression 
of) the appearance of hyperons in 
kaon condensation (?) 
 

Inhomogeneous 
structure is considered 
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At 2--3𝜌0, hyperons are expected to appear. 
  Softening of EOS  
  Maximum mass of neutron star  
becomes less than 1.4 solar mass 
and far from 2 .0 solar mass. 
  Contradicts the obs > 1.5𝑀⊙ 

Schulze et al, PRC73 
(2006) 058801 

(3) Hadron-quark phase transition 

[Phys. Rev. D 76, 123015] 
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Quark-hadron mixed phase to get density profile, energy, 
pressure, etc of the system 
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EOS of matter 

Full calculation is between 
the Maxwell construction 
(local charge neutral) and 
the bulk Gibbs calculation 
(neglects the surface and 
Coulomb). 
 
Closer to the Maxwell. 
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Density at position 𝑟 

mass inside the position 𝑟 

total mass and radius. 

Pressure  (input of TOV eq.)  

TOV equation 

Structure of compact stars 

Bulk Gbbs Full calc surf=40 MeV/fm2 Maxwell const. 

Density profile of a compact star (𝑀 = 1.4 𝑀⨀)  
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Mass-radius relation of a cold neutron star 

Full calculation with 
pasta structures yields 
similar result to the 
Maxwell construction. 
 

Maximum masses are 
almost the same for 3 
cases. 
 

We need to improve 
largely the quark EOS 
or hadron EOS to get 
~2𝑀⨀ 

 

surf=40 
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Summary 

First-order phase transition of nuclear matter 
   mixed phase of multi-components with  charge 
   Structured mixed phase  (pasta). 

      important for EOS. 

It also affects the chemical composition. 
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Important subjects on NS 

• Maximum mass of NS: 𝑀max~2𝑀⨀ 
 EOS too soft if Y mixed. 
• Cooling of NS by neutrino emission : 
 Too fast if hyperons are mixed. 
• Magnetar: 
 Origin of strong magnetic field 



•   
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