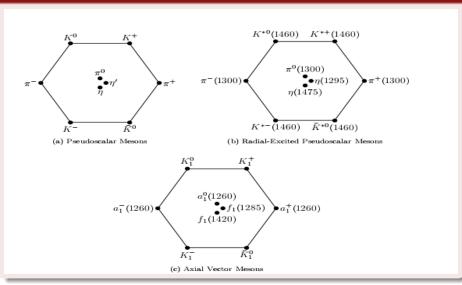
Study of the $\gamma p \rightarrow f_1(1285)p$ reaction using the effective Lagrangian approach

Parada Hutauruk ¹, Sangho Kim ¹ Yongseok Oh ^{1,2}

¹Asia Pacific Center for Theoretical Physics (APCTP)

²Department of Physics, Kyungpook National University


2016 JAEA/ASRC Reimei Workshop: New Exotic Hadron Matter at JPARC, 24-26 October 2016, Inha University

Outline

- Motivation
- 2 Effective Lagrangian Approach
- 3 Our Model Prediction (Preliminary)
- 4 Conclusion and Outlook

Axial Vector Mesons

The properties of the $f_1(1285)$ based on PDG ¹

Properties of the $f_1(1285)$

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

$$f_1(1285)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

f₁(1285) MASS

\(\frac{VALUE \ (MeV)}{1281.9 \pm 0.5 \text{OUR AVER}} \)		scale factor of	COMMENT 1.8. See the ideogram
$1281.16\pm\ 0.39\pm\ 0.45$	¹ LEES	12X BABR	$\tau^{-} \rightarrow \pi^{-} f_{1}(1285) \nu_{\tau}$
1285.1 \pm 1.0 $^{+}$ 1.6 $^{-}$ 0.3	² ABLIKIM	11J BES3	$J/\psi \rightarrow \omega (\eta \pi^+ \pi^-)$
$1281 \pm \ 2 \pm \ 1$	AUBERT	07AU BABR	10.6 $e^+e^- \rightarrow f_1(1285)\pi^+\pi^-\gamma$
$1276.1 \pm 8.1 \pm 8.0 \ 203$	BAI	04J BES2	$J/\psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$
1274 ± 6 237	ABDALLAH	03H DLPH	91.2 e ⁺ e [−] → K ⁰ K [±] π [∓] + X

¹J. Beringer *et al.*, Phys. Rev. D. **86**, 010001 (2012) □ → ⟨♂→ ⟨▼→ ⟨▼→ ▼▼

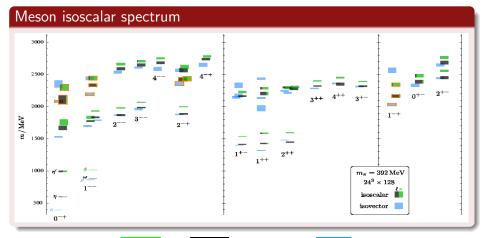
The decay width of the $f_1(1285)$ based on PDG 2

The decay width $\Gamma_{f_1(1285)}$

 $f_1(1285) \text{ mass (MeV)}$

f₁(1285) WDTH

Only experiments giving width error less than 20 MeV are kept for averaging.


<u>VALUE (MeV)</u> 24.2 ± 1.1 OU	<u>EVTS</u> R AVERAGE	DOCUMENT ID Error includes so	ale fa	TECN ctor of 1	.3. See the ideogram below.
22.0 ± 3.1 + 2	2.0 5	9 ABLIKIM	11J	BES3	$J/\psi \rightarrow \omega (\eta \pi^+ \pi^-)$
35 ± 6 ± 4	ŀ	AUBERT			10.6 $e^+e^- \rightarrow f_1(1285)\pi^+\pi^-\gamma$
40.0 ± 8.6 ± 9	.3 203	BAI	04J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^{+} \pi^{-}$
29 ±12	237	ABDALLAH	03н	DLPH	$^{91.2}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
45 ± 9 ± 7	20k	ADAMS			18 GeV $\pi^- p \rightarrow \kappa^+ \kappa^- \pi^0 p$

²J. Beringer *et al.*, Phys. Rev. D. **86**, 010001 (2012)

Study of the $\gamma p \rightarrow f_1(1285)p$ reaction using

5 / 25

A spectrum of isoscalar Meson from Lattice QCD results ³

NOTE: Isoscalar: Green and Black and isovector: Cyan

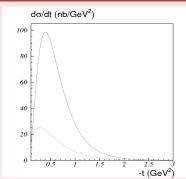
³J. Dudek *et al.*, Phys. Rev. D **88**, 094505 (2013) ←□→←♂→←≧→←≧→ ≥ →へへ

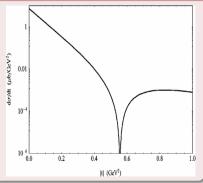
New data and lack of theoretical model for this channel

Driving by the current experimental status and the lack of the theoretical (our understanding) of $f_1(1285 \text{ and } \eta(1295))$, hence we have two underlying motivation for studying this reaction. However we briefly remind that we concentrate on $f_1(1285)$ with properties $J^{PC}=(1^{++})$, mass $=1281\pm0.6~{
m MeV}$ and the Full width, $\Gamma=24.3\pm1.1~{
m MeV}$ in this talk ⁴

Theoretical Model Prediction status

Kochelev Model


 \rightarrow Exchange of ρ and ω trajectories in the Regge framework for $|t| = -Q^2 < 1 \text{GeV}^2$. They predicted that the total cross section of $f_1(1285)$ is about four times that of $\eta(1295)$, where the value of the total cross section respectively, $\sigma_{f_1(1285)} = 68 \mathrm{nb}$ and $\sigma_{n(1295)} = 18 \mathrm{nb}$ ⁵

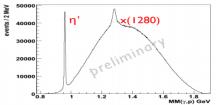

⁴K. Nakamura *et al.*, J. Phys. G **37**, 075021 (2010)

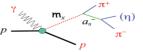
Domokos Model

ightarrow Using the Chern-Simons term induced interation in holographic QCD. Their result is quite different prediction to the Kochelev Model 6

Kochelev (Left) and Domokos (Right) Model Predictions

⁶S. K. Domokos, *et al.*, Phys. Rev. D **80**, 115018 (2009)


A CLAS collaboration at JLAB program. The status of the $f_1(1285)^{7}$

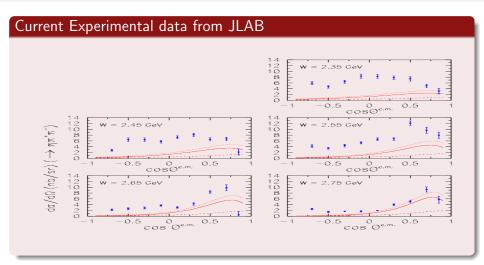

Experimental status

The $f_1(1285)$ at CLAS

$f_1(1285): I^G(J^{PC}) = 0^+(1^{++})$

- Well-established axial-vector meson seen in several hadronic reactions;
 - o ~7000 events reported world-wide
 - seen in PWA analyses
- Possible "dynamically generated" KK* c.c. state
- Extraction of resonance parameters complicated by potential overlap with other states, e.g. n(1295)

(possible reaction topology)


Study of the $f_1(1285)$ in $\gamma p \rightarrow p \pi^+ \pi^-(\eta)$ at CLAS:

- the yp missing mass spectrum
- great statistics: ~1.5 x 10⁵ x(1280)
 events
- Which state is it? fl(1285), η(1295), or both?

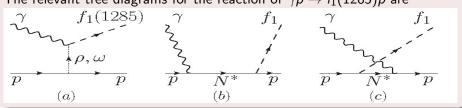
Work by R. Schumacher and R. Dickson (CMU)

⁷De Vita slides, 2015

- 4 日 > 4 周 > 4 注 > 4 注)

Note: The red solid line: Kochelev model prediction for the $f_1(1285)$ and the red dashed line for the $\eta(1295)$.

⁸R. Dickson, *et al.*, Phys. Rev. C **93**, 065202 (2016)


So now we need a model to describe the data??...

Outline

- Motivation
- 2 Effective Lagrangian Approach
- 3 Our Model Prediction (Preliminary)
- 4 Conclusion and Outlook

General Formalism

The relevant tree diagrams for the reaction of $\gamma p o f_1(1285) p$ are

Effective Lagrangian for t-channel

$$\mathcal{L}_{f_1 V \gamma} = g_{f_1 V \gamma} \epsilon^{\mu \nu \alpha \beta} f_{1\mu} (\partial^{\lambda} \partial_{\lambda} V_{\nu}^{0}) \partial_{\alpha} A_{\beta}$$

$$\mathcal{L}_{VNN} = -g_{VNN} \bar{N} [\gamma_{\mu} V^{\mu} - \frac{\kappa_{VNN}}{2M_{N}} \sigma_{\mu \nu} \partial^{\nu} V^{\mu}] N, \qquad (1)$$

where $V = \omega, \tau.\rho$.

The scattering amplitude for the $\gamma p \to f_1(1285)p$ reaction is defined as

$$\mathcal{M} = \epsilon_{\nu}^* \bar{u}_{N'} \mathcal{M}^{\mu\nu} u_N \epsilon_{\mu}, \tag{2}$$

where u_N and $\bar{u}_{N'}$ stand for the Dirac spinors of the incoming and outgoing proton, respectively. The ϵ_μ and ϵ_ν^* denote the polarization vectors of the initial photon and the final $f_1(1285)$ meson.

 $\overline{\mathcal{M}}^{\mu
u}$

$$\mathcal{M}_{V}^{\mu\nu} = \mathcal{I}_{V} \frac{ig_{f_{1}} v_{\gamma} g_{VNN}}{(t - M_{V}^{2})} \epsilon^{\mu\nu\alpha\beta} \left(\gamma^{\rho} - \frac{i\kappa_{VNN}}{2M_{N}} q_{\lambda} \sigma^{\rho\lambda} \right) P_{\alpha\rho} k_{1\beta} q^{2},$$

$$P_{\alpha\rho} = -g_{\alpha\rho} + \frac{q_{\alpha} q_{\rho}}{M_{V}^{2}}.$$
(3)

t-channel amplitude with the form factors taken into account

$$\mathcal{M}_{t} = \mathcal{M}_{\rho} F_{f_{1}\rho\gamma}(t) F_{\rho NN}(t) + \mathcal{M}_{\omega} F_{f_{1}\omega\gamma}(t) F_{\omega NN}(t)$$
 (4)

where the form factors are defined as

Form Factors

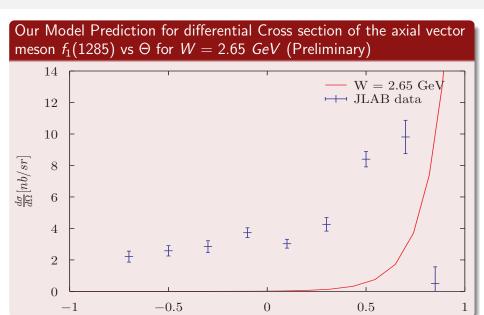
$$F_{f_1V\gamma} = \left(\frac{\Lambda_{f_1V\gamma}^2 - M_V^2}{\Lambda_{f_1V\gamma}^2 - t}\right)^2$$

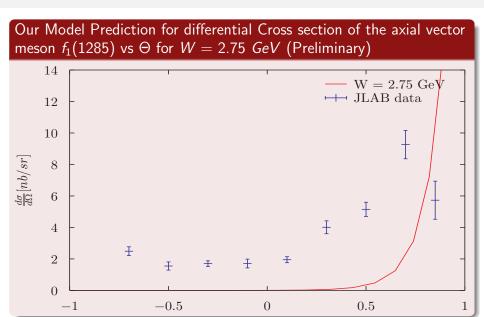
$$F_{VNN} = \left(\frac{\Lambda_{VNN}^2 - M_V^2}{\Lambda_{VNN}^2 - t}\right). \tag{5}$$

where $\Lambda_{\rho NN}=1.5 {\rm GeV}$, $\Lambda_{\omega NN}=1.5 {\rm GeV}$ and $\Lambda_{\rho f_1 \gamma}=1.04 {\rm GeV}$ and $\Lambda_{\omega f_1 \gamma}=1.04 {\rm GeV}$.

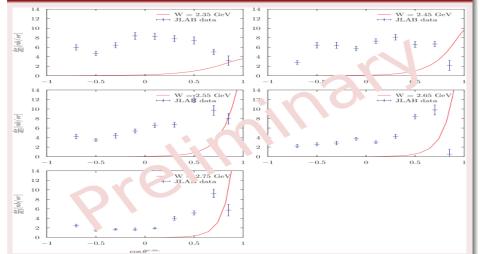
Form Factors

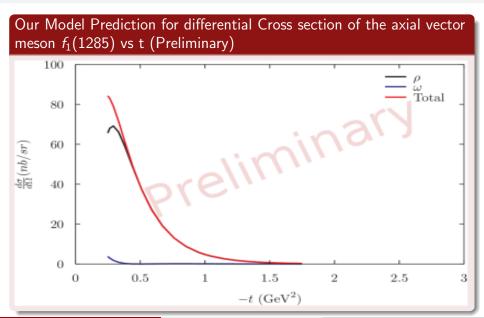
The ρ trajectory the rotating phase is defined as


$$\alpha_{\omega} = 0.44 + 0.9t$$
 $\alpha_{\rho} = 0.55 + 0.8t.$
(6)


Coupling constants

Coupling constants	Kochelev	Domokos
g_{ω} NN	10.6	9
$g_{ ho}$ NN	3.9	2.4
g_{ω}^{T}	0.0	0.0
$egin{array}{c} \mathcal{S}_{\omega}^{T} \ & & & & & & & & & & & & & & & & & &$	6.1	0.0
$g_{f_1 ho\gamma}$	0.97	-0.99
$g_{f_1\omega\gamma}$	$\frac{1}{3}g_{f_1\rho\gamma}$	-0.33


Outline


- Motivation
- 2 Effective Lagrangian Approach
- 3 Our Model Prediction (Preliminary)
- 4 Conclusion and Outlook

Our Model Prediction for differential Cross section of the axial vector meson $f_1(1285)$ vs Θ (Preliminary)

Outline

- Motivation
- 2 Effective Lagrangian Approach
- 3 Our Model Prediction (Preliminary)
- Conclusion and Outlook

Conclusion

- The differential cross section of the $f_1(1285)$ have been studied in the effective Lagrangian approach
- ② The only t−channel seems not enough to describe the recent differential cross section data from CLAS
- **3** Need advance study and analysis for this reaction by including the s- and u- exhanges

Thank You for Your Attention

감사합니다.

Thank you.