

LHCb results of exotic hadrons

25 October, 2016

Outline

- > Introduction
 - Exotic spectroscopy at LHCb
 - Pentaquarks
 - Tetraquarks
- > Conventional spectroscopy at LHCb
- > Summary and outlook

The LHCb experiment

- Designed for heavy flavor physics, covering a broad scope of physics, e.g.
 - Indirect search of New Physics via precision measurements of CPV, CKM and rare decays
 - Hadron spectroscopy
- > Pros of hadron spectroscopy study at LHCb
 - Large production cross-section at the LHC
 - Efficient trigger
 - Vertex locator with high precision
 - High precision tracking system
 - Powerful PID of hadrons
 - Efficient muon system

Excellent performance

LHCb data taking

LHCb Integrated Luminosity in pp collisions 2010-2016

Spectroscopy at LHCb

- > Study of spectroscopy can help to understand the nature of QCD
- > LHCb has been playing an important role in the study of spectroscopy, standard or exotic, since the LHC started
 - X(3872), $Z(4430)^+$, $P_c(4380)^+$, $P_c(4450)^+$, ...
 - Excited c and b hadrons
- > Topics today focus on the following recent results
 - Model-independent study in $\Lambda_b^0 \to J/\psi p K^-$ decays PRL 117 (2016) 082002
 - Study in Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p\pi^-$ decays PRL 117 (2016) 082003
 - Four exotic states in $B^+ o J/\psi \phi K^+$

arXiv:1606.07895/8, submitted to PRL, PRD

• Search for $X(5568)^+ o B_S^0 \pi^+$

PRL 117 (2016) 152003

- Properties of the Ξ_b^{0*} baryon JHEP 05 (2016) 161
- Study of $D_{sJ}^{(*)+}$ mesons JHEP 02 (2016) 133
- Excited D mesons in $B o D^+\pi^-\pi^-$ decays PRD 94 (2016) 072001

Exotic spectroscopy

- Model-independent study in $\Lambda_b^0 \to J/\psi p K^-$ decays
- Study in Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p\pi^-$ decays
- $X o J/\psi \phi$ in $B^+ o J/\psi \phi K^+$
- Search for $X(5568)^+ o B_s^0 \pi^+$

Observation of $P_c(4380)^+$ and $P_c(4450)^+$

PRL 115 (2015) 072001

- The peak structure of $J/\psi p$ in the $\Lambda_b^0 \to J/\psi p K^-$ decay attracted the attention of LHCb in late 2014
- ightharpoonup The Dalitz plot show a horizontal band around $m_{J/\psi p}^2=20~{
 m GeV}^2$ across the whole m_{Kp}^2 region

 $P_c^+ \rightarrow J/\psi p$?

Strong indication of a resonant $J/\psi p$ state

Observation of $P_c(4380)^+$ and $P_c(4450)^+$

PRL 115 (2015) 072001

\triangleright A full amplitude analysis shows the necessity of two resonant states $P_c(4380)^+$ and $P_c(4450)^+$

Resonance	Mass (MeV)	Width (MeV)	Significance	Fit fraction(%)
$P_c(4380)^+$	4380±8±29	205±18±86	9 σ	$8.4 \pm 0.7 \pm 4.2$
$P_c(4450)^+$	$4449.8 \pm 1.7 \pm 2.5$	39±5±19	12σ	$4.1\pm0.5\pm1.1$

$$\mathcal{B}(\Lambda_b^0 \to P_c(4380)^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = (2.66 \pm 0.22 \pm 1.33^{+0.48}_{-0.38}) \times 10^{-5}$$

$$\mathcal{B}(\Lambda_b^0 \to P_c(4450)^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = (1.30 \pm 0.16 \pm 0.35^{+0.23}_{-0.18}) \times 10^{-5}$$

CPC40 (2016) 011001

 P combination:

MI analysis of $\Lambda_b^0 o J/\psi p K^-$

PRL 117 (2016) 082002

ightharpoonup Model independent proof is especially important, due to the difficulties in construction of a complete Λ^* states

Legendre moments:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta), \quad \theta = \theta_{K^*} \text{ or } \theta_{\Lambda^*} \\ \langle P_l^U \rangle = \int_{-1}^{+1} \frac{\mathrm{d}N}{\mathrm{d}\cos\theta} P_l(\cos\theta) \mathrm{d}\cos\theta \propto \sum_{i=1}^{n_{\mathrm{evt}}} \frac{1}{\varepsilon_i} P_l(\cos\theta_i)$$

 Λ^* can contribute only to low-order moments

 Λ^* -only hypothesis called H_0

$$l_{\max} = 2J_{\max}$$

 J_{max} : the highest spin of possible Λ^* resonances

Reflections of exotic hadrons can contribute to low and high order moments:

Detecting non-zero moments above 2_J max signals presence of exotic states

Setting $l_{ m max}$ as function of m_{pK}

PRL 117 (2016) 082002

- \triangleright From known Λ^* , and quark model predictions
 - used as a guide
- Much fewer known states than predicted!
- ightharpoonup Known Λ^* states: boxes $M_0 \pm \Gamma_0$
- Λ* mass predictions by Loring-Metsch-Petry EPJA10 (2001) 447

 $l_{\max}(m_{pK})$

Null hypothesis versus data

PRL 117 (2016) 082002

- \succ Toy MC simulates the reflection of mass and angular structure of Kp onto $m_{J/\psi p}$
- \succ Limits of $l_{
 m max}$ used (i.e. zero moments for orders $> l_{
 m max}$)
- $ho m_{J/\psi p}$ cannot be explained by the reflections of conventional (non)resonances alone

Cabibbo suppressed decays: $\Lambda_b^0 o J/\psi p \pi^-$

- > Signal statistics lower than $\Lambda_b^0 \to J/\psi p K^-$ (Cabibbo-favored): 1885 versus 26007
- > Higher background fraction: 18% versus 5.4%
- \triangleright Many N^* and Δ states involved in the decay

Possible exotic constribution in $\Lambda_b^0 o J/\psi p \pi^-$

 \triangleright More complicate due to possible Z_c^- states

PRL 117 (2016) 082003

> Exotic hadron contributions examined are:

$$P_c(4380)^+, P_c(4450)^+ \to J/\psi p^+ \text{ and } Z_c(4200)^- \to J/\psi \pi^-$$

 $> Z_c(4200)^-$: $m_0=4196^{+35}_{-32}$ MeV, $\varGamma=370^{+~99}_{-149}$ MeV, $J^P=1^+$ by Belle (6.2 σ) in $B^0 o J/\psi\pi^-K^+$ decays [PRD88(2013) 074026]

Amplitude fits to $\Lambda_b^0 o J/\psi p \pi^-$

PRL 117 (2016) 082003

- Significance of $P_c(4380)^+$ $P_c(4450)^+$, $Z_c(4200)^$ taken together is 3.1 σ
- Evidence for exotic hadron contributions to $\Lambda_b^0 o J/\psi p \pi^-$

Fit results for $\Lambda_b^0 o J/\psi p \pi^-$

PRL 117 (2016) 082003

- > Significance of $P_c(4380)^+$, $P_c(4450)^+$, $Z_c(4200)^-$ taken together is 3.1 σ (including systematic uncertainty)
 - evidence for exotics
- > Individual exotic hadron contributions are not significant
- > If assume $Z_c(4200)^-$ contribution negligible, significance of P_c^+ states increases to 3.3 σ

State	Fit fraction (%)	$\mathcal{B}(\Lambda_b^0 o P_c^+ \pi^-)/\mathcal{B}(\Lambda_b^0 o P_c^+ K^-)$
$Z_c(4200)^-$	$7.7 \pm 2.8^{+3.4}_{-4.0}$	_
$P_c(4380)^+$	$5.1 \pm 1.5^{+2.1}_{-1.6}$	$0.050 \pm 0.016^{+0.020}_{-0.016} \pm 0.025$
$P_c(4450)^+$	$1.6^{+0.8}_{-0.6}{}^{+0.6}_{-0.5}$	$0.033^{+0.016}_{-0.014}{}^{+0.011}_{-0.009} \pm 0.025$

Expected if the additional internal W emission diagram negligible: $0.07 \sim 0.08$ [H.-Y Cheng and C.-K Chua, PRD92 (2015) 096009]

The results are consistent with those obtained from the $\Lambda_b^0 o J/\psi p K^-$ decay

Exotic spectroscopy

- Model-independent study in $\Lambda_b^0 \to J/\psi p K^-$ decays
- Study in Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p\pi^-$ decays
- $X o J/\psi \phi$ in $B^+ o J/\psi \phi K^+$
- Search for $X(5568)^+ o B_s^0 \pi^+$

X(4140) and X(4274) at CDF

- > CDF observed a narrow $J/\psi\phi$ structure in $B^+ \to J/\psi\phi K^+$ decays [Initial publication on 2. 7 fb⁻¹ PRL102(2009)242002]
 - $M = 4143.4 \pm 3.0 \pm 0.6 \text{ MeV}$
 - $\Gamma = 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$
 - Necessarily exotic since it is narrow and above the $D_s\overline{D}_s$ threshold
 - $[cs\overline{c}\overline{s}]$ tetraquark?
 - Hint of a second structure: X(4274)
- ➤ Not confirmed by B-factories and LHCb with 0.37 fb⁻¹ data
- Confirmed by D0 and CMS, both with narrow width

$B^+ o J/\psi \phi K^+$ data sample in LHCb

arXiv:1606.07895, submitted to PRL arXiv: 1606.07898, submitted to PRD

Statistically, the most powerful $B^+ o J/\psi \phi K^+$ sample analyzed so far

Use sidebands to subtract background

Dalitz plot of $B^+ o J/\psi \phi K^+$ decays

- Is it a reflection of interfering
 - $K^{*\pm} \rightarrow \phi K^{\pm}$
- Proper amplitude analysis needed!
- All previous analyses performed naïve 1D mass fits to $m_{J/\psi\phi}$
 - Ad hoc assumptions for K^{*-}
 - No sensitivity to J^{PC} of X structure

arXiv:1606.07895, submitted to PRL arXiv: 1606.07898, submitted to PRD

Amplitude fits with K^* only

arXiv:1606.07895, submitted to PRL arXiv: 1606.07898, submitted to PRD

Guidance from quark model prediction

Godfrey-Isgur, PRD 32, 189 (1985)

Established

Unconfirmed

- $ightharpoonup M_0$ and Γ_0 of K^* s are free parameters in the fits
- Data cannot be described by K* only
 - Example fit: 12 K^* + NR ϕK

Amplitude fit including 4 exotic X

arXiv:1606.07895, submitted to PRL arXiv: 1606.07898, submitted to PRD

- Four X states + NR $J/\psi\phi$ give very significant improvements over the models with K^* s alone
- ightharpoonup Default model also includes NR ϕK + 7 K^* (float M_0 and Γ_0) that are significant
- \succ These results improve significantly the knowledge of K spectroscopy (results in the paper and backup slides)

Results of amplitude fits

arXiv:1606.07895, submitted to PRL arXiv: 1606.07898, submitted to PRD

- Full amplitude analysis allows us to identify J^{PC} , useful for interpretations of the states
- > X(4140) and X(4274): identified as $I^{PC} = 1^{++}$ at > 5σ
- $> X(4500) \text{ and } X(4700) : J^{PC} = 0^{++} \text{ at } > 4\sigma$

Contri-	sign.			Fit results
bution	or Ref.	$M_0 [\mathrm{MeV}]$	$\Gamma_0 \; [\mathrm{MeV} \;]$	FF %
All $X(1^+)$				$16\pm 3 ^{+6}_{-2}$
X(4140)	8.4σ	$4146.5\pm4.5_{-2.8}^{+4.6}$	$83\pm21^{+21}_{-14}$	$13\pm3.2^{+4.8}_{-2.0}$
Average other expt.		4143.4 ± 1.9	15.7 ± 6.3	
X(4274)	6.0σ	$4273.3\pm 8.3^{+17.2}_{-3.6}$	$56\pm11^{+8}_{-11}$	$7.1\pm2.5^{+3.5}_{-2.4}$
CDF	[28]	$4274.4^{+8.4}_{-6.7}\pm 1.9$	$32^{+22}_{-15}\pm 8$	substantially
CMS	[25]	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15} \pm 16$	larger at LHCb
All $X(0^+)$				$28 \pm 5 \pm 7$
$\mathrm{NR}_{J\!/\psi\phi}$	6.4σ			$46\pm11^{+11}_{-21}$
X(4500)	6.1σ	$4506\pm11^{+12}_{-15}$	$92\pm21^{+21}_{-20}$	$6.6 \pm 2.4^{+3.5}_{-2.3}$
X(4700)	5.6σ	$4704\pm10^{+14}_{-24}$	$120 \pm 31 {}^{+42}_{-33}$	$12\pm 5^{+9}_{-5}$

Exotic spectroscopy

- Model-independent study in $\Lambda_b^0 \to J/\psi p K^-$ decays
- Study in Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p \pi^-$ decays
- $X o J/\psi \phi$ in $B^+ o J/\psi \phi K^+$
- Search for $X(5568)^+ \rightarrow B_s^0 \pi^+$

$X(5568)^+$ by DØ

PRL 117, 022003 (2016)

- > D0 claimed a state $X(5568)^\pm \to B_S^0 \pi^\pm$ with $B_S^0 \to J/\psi (\to \mu^+ \mu^-) \phi (\to K^+ K^-)$
 - $M = 5567.8 \pm 2.9^{+0.9}_{-1.9}$ MeV, $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5}$ MeV
 - Fraction of B_s^0 from X^{\pm} decay: $\rho_X^{D\emptyset} = (8.6 \pm 1.9 \pm 1.4) \%$
- > If confirmed, would be unique with 4 different flavours

Signal significance changes a lot when applying the cone cut:

$$\sqrt{(\Delta\eta)^2 + (\Delta\varphi)^2} < 0.3$$

$X(5568)^+$ search at LHCb

PRL 117 (2016) 152003

 B_s^0 sample 20x larger and much cleaner than DØ

No evident X(5568) in $B_s^0 \pi^{\pm}$ sample for 3 different $p_T(B_s^0)$ cuts

Upper limits at LHCb

> At 90% (95%) CL

$$\rho_X^{\text{LHCb}} = \frac{\sigma(pp \to X + \text{anything}; X \to B_S^0 \pi^{\pm})}{\sigma(pp \to B_S^0 + \text{anything})}$$
in LHCb acceptance

$$\rho_X^{\text{LHCb}}(p_{\text{T}}(B_s^0) > 5 \,\text{GeV}) < 0.011 \,(0.012)$$

$$\rho_X^{\text{LHCb}}(p_{\text{T}}(B_s^0) > 10 \,\text{GeV}) < 0.021 \,(0.024)$$

$$\rho_X^{\text{LHCb}}(p_{\text{T}}(B_s^0) > 15 \,\text{GeV}) < 0.018 \,(0.020)$$

- > No significant $B_S^0 \pi^{\pm}$ states for any mass and width below 6 GeV
- ightharpoonup Upper limit is set as a function of m(X) and $\Gamma(X)$
- Search in CMS did not observe any structure either

[CMS-PAS-BPH-16-002]

Standard hadron spectroscopy at LHCb

- LHCb also contributed a lot to standard hadron spectroscopy, owing to large cross-sections at the LHC and excellent detector performance. Very recent results include,
- \triangleright Properties of the Ξ_h^{*0} baryon JHEP 05 (2016) 161
 - Confirmation of Ξ_b^{*0}
 - Precise mass and first natural width measurements
- \triangleright Study of $D_{sl}^{(*)+}$ mesons (prompt production) THEP 02 (2016) 133
 - First observation of $D_{s2}^*(2573)^+$
 - Properties of $D_{s1}(2536)^+$, $D_{s1}^*(2700)^+$
- \triangleright Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ decays PRD94(2016)072001
 - First observation of $D_3^*(2760)^0$ (10 σ) and $D_2^*(3000)^0$ (6.6 σ)

Summary and outlook

- ➤ Using the Run-I data LHCb has made great contributions to exotic and conventional spectroscopy
- ➤ During the Run-II, the integrated luminosity will be doubled, and the statistics will be greatly increased considering the larger production cross-section at higher energy and the improved efficiencies
- > Stay tuned for more results from LHCb

谢谢!

고맙습니다!

Amplitude analysis of $\Lambda_b^0 o J/\psi p K^-$

ightarrow Allows for $\Lambda^*
ightarrow pK^-$ resonances to interfere with pentaquark states $P_c^+
ightarrow J/\psi\, p$

ψ rest frame

$$\Lambda_b^0 \to J/\psi \Lambda^* \longrightarrow pK^-$$

 Λ_b rest frame

$$\Lambda_b^0 \to P_c^+ K^- \\ \hookrightarrow J/\psi p \longrightarrow$$

Independent variables: 1 mass (m_{pK^-}) and 5 angles \rightarrow 6D fit

Fit results of ϕK^+ (non)resonant states

Contri-	Sign.		Fit results	
	0	3.6 [3.6.77.]		PP ~
bution	or Ref.	$M_0 \; [\mathrm{MeV}]$	$\Gamma_0 \; [\mathrm{MeV}]$	FF %
All $K(1^+)$	8.0σ			$42\pm 8^{+5}_{-9}$
$\mathrm{NR}_{\phi K}$				$16\pm13^{+35}_{-\ 6}$
$K(1^+) 2^1 \mathrm{P}_1$	7.6σ	$1793 \pm 59 {}^{+153}_{-101}$	$365\pm157^{+138}_{-215}$	$12\pm10{}^{+17}_{-\ 6}$
$K_1(1650)$	[31]	1650 ± 50	150 ± 50	
$K'(1^+) 2^3 P_1$	1.9σ	$1968\pm65^{+70}_{-172}$	$396\pm170^{+174}_{-178}$	$23\pm20^{+31}_{-29}$
All $K(2^-)$	5.6σ			$11\pm \ 3^{+\ 2}_{-\ 5}$
$K(2^{-}) 1^{1}D_{2}$	5.0σ	$1777 \pm 35 {}^{+122}_{-77}$	$217 \pm 116 {}^{+221}_{-154}$	
$K_2(1770)$	[31]	1773 ± 8	188 ± 14	
$K'(2^-) 1^3 \mathrm{D}_2$	3.0σ	$1853\pm27^{+18}_{-35}$	$167\pm 58^{+}_{-}^{82}_{72}$	
$K_2(1820)$	[31]	1816 ± 13	$276 \pm \ 35$	
$K^*(1^-) 1^3 D_1$	8.5σ	$1722\pm20{}^{+\ 33}_{-109}$	$354\pm 75^{+140}_{-181}$	$6.7\pm1.9^{+3.2}_{-3.9}$
$K^*(1680)$	[31]	1717 ± 27	322 ± 110	
$K^*(2^+) 2^3 P_2$	5.4σ	$2073 \pm 94 {}^{+245}_{-240}$	$678 \pm 311 {}^{+1153}_{-\ 559}$	$2.9\pm0.8^{+1.7}_{-0.7}$
$K_2^*(1980)$	[31]	1973 ± 26	373 ± 69	
$K(0^{-}) 3^{1}S_{0}$	3.5σ	$1874\pm43^{+59}_{-115}$	$168\pm 90^{+280}_{-104}$	$2.6\pm1.1^{+2.3}_{-1.8}$
K(1830)	[31]	~ 1830	~ 250	