Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions

Hiroyuki Kamano (KEK)

Current situation of $Y^*(=\Lambda^*, \Sigma^*)$ spectroscopy

PDG listing

	۸*			Σ*	
Particle	J^P	Overall status	Particle	J^P	Overall status
$\Lambda(1116)$	1/2+	****	$\overline{\Sigma(1193)}$	1/2+	****
$\Lambda(1405)$	1/2-	****	$\Sigma(1385)$	3/2+	****
$\Lambda(1520)$	3/2-	****	$\Sigma(1480)$		*
$\Lambda(1600)$	1/2 +	***	$\Sigma(1560)$	l	**
$\Lambda(1670)$	1/2-	****	$\Sigma(1580)$	3/2-	*
$\Lambda(1690)$	3/2-	****	$\Sigma(1620)$	1/2-	**
$\Lambda(1800)$	1/2-	***	$\Sigma(1660)$	1/2 +	***
$\Lambda(1810)$	1/2+	***	$\Sigma(1670)$	3/2-	****
$\Lambda(1820)$	5/2+	***	$\Sigma(1690)$		**
$\Lambda(1830)$	5/2-	***	$\Sigma(1750)$	1/2-	***
$\Lambda(1890)$	3/2+	****	$\Sigma(1770)$	1/2 +	*
$\Lambda(2000)$			$\Sigma(1775)$	5/2-	****
$\Lambda(2000)$ $\Lambda(2020)$	7/2+	* *	$\Sigma(1840)$	3/2 +	*
	/		$\Sigma(1880)$	1/2 +	**
$\Lambda(2100)$	7/2-	****	$\Sigma(1915)$	5/2+	****
$\Lambda(2110)$	5/2+	***	$\Sigma(1940)$	3/2-	***
	3/2-	*	$\Sigma(2000)$	1/2-	*
$\Lambda(2350)$		***	$\Sigma(2030)$	7/2 +	
$\Lambda(2585)$		**	$\Sigma(2070)$	5/2+	*
			$\Sigma(2080)$	3/2+	**
_	Not v	المر	$\Sigma(2100)$	7/2-	*
4		lished	$\Sigma(2250)$		***
			$\Sigma(2455)$		**
			$\Sigma(2620)$		**
•	Spin-		$\Sigma(3000)$		*
	not a	ssigned	$\Sigma(3170)$		*

Establishing Y* spectrum is crucial also for understanding thermodynamic properties below the QCD crossover.
[Bazavov et al., PRL113(2014)072001]

Possibility of producing secondary K_L beam are being discussed at JLab (See e.g., arXiv:1604.02141)

Current situation of $Y^*(=\Lambda^*, \Sigma^*)$ spectroscopy

PDG listing

	۸*			Σ*	
Particle	J^P	Overall status	Particle	J^P	Overall status
$\Lambda(1116)$	1/2+	****	$\overline{\Sigma(1193)}$	1/2+	****
$\Lambda(1405)$	1/2-	****	$\Sigma(1385)$	$3/2 \pm$	****
$\Lambda(1520)$	3/2-	****	$\Sigma(1480)$		*
$\Lambda(1600)$	1/2 +	***	$\Sigma(1560)$		**
$\Lambda(1670)$	1/2-	****	$\Sigma(1580)$	3/2-	*
$\Lambda(1690)$	3/2-	****	$\Sigma(1620)$	1/2-	**
$\Lambda(1800)$	1/2-	***	$\Sigma(1660)$	1/2 +	***
$\Lambda(1810)$	1/2+	***	$\Sigma(1670)$	3/2-	****
$\Lambda(1820)$,		$\Sigma(1690)$		**
$\Lambda(1830)$,		$\Sigma(1750)$	1/2-	***
$\Lambda(1890)$	3/2+		$\Sigma(1770)$	1/2 +	*
$\Lambda(1030)$ $\Lambda(2000)$			$\Sigma(1775)$	5/2-	****
$\Lambda(2000)$ $\Lambda(2020)$		*	$\Sigma(1840)$	3/2+	*
	/		$\Sigma(1880)$	1/2 +	**
$\Lambda(2100)$	7/2-	****	$\Sigma(1915)$	5/2+	****
$\Lambda(2110)$	5/2+	***	$\Sigma(1940)$	3/2-	***
$\Lambda(2325)$	3/2-	*	$\Sigma(2000)$	1/2-	*
$\Lambda(2350)$		***	$\Sigma(2030)$	7/2 +	****
$\Lambda(2585)$		**	$\Sigma(2070)$	5/2+	*
			$\Sigma(2080)$	3/2+	**
	Not v	المع	$\Sigma(2100)$	7/2-	*
		ven lished	$\Sigma(2250)$		***
	Catabilaneu		$\Sigma(2455)$		**
			$\Sigma(2620)$		I **
1 -	Spin-		$\Sigma(3000)$		*
i	not a	ssigned	$\Sigma(3170)$		*
					•

- ✓ Comprehensive partial-wave analyses of K⁻ p reactions to extract Y* defined by poles have been accomplished just recently:
 - Kent State University (KSU) group
 (→ 2013, "KSU on-shell parametrization" of S-matrix)
 Zhang et al., PRC88(2013)035204, 035205.
 - → Reanalysis of KSU single-energy solution using an on-shell K-matrix model (Femandez-Ramirez et al., arXiv:1510.07065)
 - Our group
 - (→ 2014-2015, dynamical coupled-channels approach)
 HK, Nakamura, Lee, Sato, PRC90(2014)065204; 92(2015)025205

Dynamical Coupled-Channels (DCC) approach to Λ* & Σ* productions

Dynamical Coupled-Channels (DCC) model:

[Matsuyama, Sato, Lee, PR439(2007)193; HK, Nakamura, Lee, Sato, PRC88(2013)035209;90(2014)065204]

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

$$CC \quad \text{off-shell}$$
effect effect

$$a, b, c = (\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, K\Xi, \pi\Sigma^*, \bar{K}^*N, \cdots)$$

quasi two-body channels of three-body $\pi\pi\Lambda$ & $\pi\overline{K}N$

✓ Summing up all possible transitions between reaction channels !!
 (→ satisfies multichannel two- and three-body unitarity)

e.g.) KN scattering

✓ Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

What we have done so far

With the DCC approach developed for the S= -1 sector, we made:

- ✓ Comprehensive analysis of *ALL* available data (more than 17,000 data points) of $K^-p \to \overline{K}N$, $\pi\Sigma$, $\pi\Lambda$, $\eta\Lambda$, $K\Xi$ up to W = 2.1 GeV. [HK, Nakamura, Lee, Sato, PRC90(2014)065204]
- ✓ Determination of threshold parameters (scattering lengths, effective ranges,...); the partial-wave amplitudes of $\overline{K}N \rightarrow \overline{K}N$, $\pi\Sigma$, $\pi\Lambda$, $\eta\Lambda$, $K\Xi$ for S, P, D, and F waves. [HK, Nakamura, Lee, Sato, PRC90(2014)065204]
- ✓ Extraction of Y* resonance parameters (mass, width, couplings, ...) defined by poles of scattering amplitudes. [HK, Nakamura, Lee, Sato, PRC92(2015)025205]

Supercomputers are necessary for the analysis!!

Results of the fits

HK, Nakamura, Lee, Sato, PRC90(2014)065204

Results of the fits

$K^{-}p \rightarrow K^{-}p$ scattering

HK, Nakamura, Lee, Sato, PRC90(2014)065204

$d\sigma/d\Omega$ (1464 < W < 1831 MeV)

$d\sigma/d\Omega$ (1832 < W < 2100 MeV)

P (1730 < W < 2080 MeV)

Red: Model A Blue: Model B

Extracted Λ^* and Σ^* mass spectrum

HK, Nakamura, Lee, Sato, PRC92(2015)025205 Spectrum for Y* resonances found above the KN threshold (+ updates) Red: Model A **Blue: Model B** M_R: Resonance New narrow 3/2+ resonance Green: KSU[PRC88(2013)035205] pole mass M = 1671 - 5i MeVBlack: PDG (only 4- & 3-star Y*; (complex) near the ηΛ threshold !! **Breit-Wigner**) $J^P(L_{I\;2J})$ "Λ" resonance (I=0) "Σ" resonance (I=1) $J^{P}(L_{12J})$ $7/2^{+}(F_{07})$ $3/2^{+}(P_{03})$ $1/2^{+}(P_{01})$ $1/2^{+}(P_{11})$ $3/2^{+}(P_{12})$ $5/2^{+}(\mathbf{F}_{15})$ $7/2^{+}(F_{12})$ 2,2 2,2 (GeV) 1.8 (\frac{5}{9} 1.8) 1.4 1.4 PDG (BW) PDG (BW) **B** KSU KSU 1.2 1.2 $1/2^{-}(S_{01})$ $3/2^{-}(D_{03})$ $5/2^{-}(D_{05})$ $1/2^{-}(S_{11})$ $3/2^{-}(D_{12})$ $5/2^{-}(D_{15})$ 2.2 2.2 M (GeV) M (GeV) **KN** threshold 1.4 1.4 1.2 1.2

Extracted Λ^* and Σ^* mass spectrum

Extracted Λ^* and Σ^* mass spectrum

Strategy for establishing Y* resonances using antikaon-induced reactions

Model for deuteron-target reactions

- ✓ Multistep processes are treated in a sequential manner.
- ✓ Off-shell amplitudes for meson-baryon sub-processes () are taken from our dynamical coupled-channels model. HK, Nakamura, Lee, Sato, PRC90(2014)065203

Unique feature of our work:

[PRC51(1995)36]

For elementary meson-baryon subprocesses, we employ amplitudes that are

- Completely dominates the reaction processes at the kinematics with $\theta_N \sim 0$. (\Rightarrow J-PARC E31)
- \triangleright well-tested by K⁻p \rightarrow K̄N, πΣ, πΛ, ηΛ, KΞ <u>up to W = 2.1 GeV</u>.
- not only for S wave, but also P, D, F waves.

Results for K⁻d \rightarrow ($\pi\Sigma$)₀n

 $p_{K}^{-} = 1 \text{ GeV}, \quad \theta_{n} = 0 \text{ deg.}$

HK, Lee, arXiv:1608.03470

Model A (Full)

– – Model B (Full)

Results for K⁻d \rightarrow ($\pi\Sigma$)₀n

 $p_{K}^{-} = 1 \text{ GeV}, \quad \theta_{n} = 0 \text{ deg.}$

HK, Lee, arXiv:1608.03470

- Model A (Full)
- – Model B (Full)
- Model A (only S-wave for $\overline{K}N \rightarrow \overline{K}^{ex}N$)
- $\cdot \cdot$ Model B (only S-wave for $\overline{K}N \rightarrow \overline{K}^{ex}N$)

Results for K⁻d \rightarrow ($\pi\Sigma$)₀n

 $p_{K}^{-} = 1 \text{ GeV}, \quad \theta_{n} = 0 \text{ deg.}$ HK, Lee, arXiv:1608.03470

Summary

- ✓ Accomplished comprehensive analysis of K⁻ p → K̄N, πΣ, πΛ, ηΛ, KΞ up to W = 2.1 GeV for the first time within a DCC approach.
- ✓ Successfully extracted partial-wave amplitudes (up to F wave) and Y* resonance parameters defined by poles of amplitudes.
 - New narrow $J^P = 3/2^+ \Lambda^*$ resonance (M_R = 1672-i5 MeV) located near the ηΛ threshold
 - New $J^P = 1/2^- \Lambda^*$ resonance (Re $M_R \sim 1520$ MeV) with mass close to $\Lambda(1520)3/2^-$
 - > Unestablished low-lying Σ* resonances just above KN threshold
- ✓ Application to K⁻ d reactions
 - Use of appropriate meson-baryon amplitudes is crucial for computing cross sections.
 - Λ(1405) is found to be sensitive to DCS (→ what about other low-lying resonances ??)

Summary

- ✓ Accomplished comprehensive analysis of $K^-p \to \overline{K}N$, $\pi\Sigma$, $\pi\Lambda$, $\eta\Lambda$, $K\Xi$ up to W = 2.1 GeV for the first time within a DCC approach.
- ✓ Successfully extracted partial-wave amplitudes (up to F wave) and Y* resonance parameters defined by poles of amplitudes.
 - New narrow $J^P = 3/2^+ \Lambda^*$ resonance (M_R = 1672-i5 MeV) located near the ηΛ threshold
 - New $J^P = 1/2^- \Lambda^*$ resonance (Re $M_R \sim 1520$ MeV) with mass close to $\Lambda(1520)3/2^-$
 - Unestablished low-lying Σ* resonances just above KN threshold
- ✓ Application to K⁻ d reactions
 - > Use of appropriate meson-baryon amplitudes is crucial for computing cross sections.
 - Λ(1405) is found to be sensitive to DCS (→ what about other low-lying resonances ??)

Next work:

✓ Study of YY interaction (including H dibaryon) via K⁻ d → K⁰ΛΛ, K⁰ΞΝ

Back up

How we study the region below the KN threshold?

Other possible reactions that can access the region below KN threshold

Forward p(γ, K)X reactions (→ L. Guo, CLAS12)
Forward p(π, K*)X reactions with high-momentum pion beam (→ J-PARC)

In theoretical analysis point of view, these reactions may be more "economical" than K⁻ d reactions.

Importance of 2 \rightarrow 3 reactions: Branching ratios of high-mass Y* resonances

- ✓ High-mass Y* have large branching ratio to $\pi\Sigma^*$ ($\pi\pi\Lambda$) & \overline{K}^* N ($\pi\overline{K}$ N)
 - $ightharpoonup K^- p o \pi \pi \Lambda$, $\pi \overline{K} N$,... data would play a crucial role for establishing high-mass Y*.
 - → Similar to high-mass N* and Δ* case, where $\pi\pi$ N channel plays a crucial role. (e.g., measurement of π N → $\pi\pi$ N reactions at J-PARC E45)

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Extracted scattering lengths and effective ranges

HK, Nakamura, Lee, Sato, PRC90(2014)065204

Scattering length and effective range

	Mod	lel A	Model B		
	I=0	I=1	I = 0	I=1	
$a_{\bar{K}N}$ (fm)	-1.37 + i0.67	0.07 + i0.81	-1.62 + i1.02	0.33 + i0.49	
$a_{\eta\Lambda}$ (fm)	1.35 + i0.36	-	0.97 + i0.51	-	
$a_{K\Xi}$ (fm)	-0.81 + i0.14	-0.68 + i0.09	-0.89 + i0.13	-0.83 + i0.03	
$r_{\bar{K}N}$ (fm)	0.67 - i0.25	1.01 - i0.20	0.74 - i0.25	-1.03 + i0.19	
$r_{\eta\Lambda} \; ({\rm fm})$	-5.67 - i2.24	-	-5.82 - i3.32	-	
$r_{K\Xi}$ (fm)	-0.01 - i0.33	-0.42 - i0.49	0.13 - i0.20	-0.22 - i0.11	

$$a_{K-p} = -0.65 + i0.74 \text{ fm (Model A)}$$

 $a_{K-p} = -0.65 + i0.76 \text{ fm (Model B)}$

S-wave dominance??

K⁻ p → MB total cross sections near threshold

Solid: Full Dashed: S wave only

For K- p $\rightarrow \pi\Lambda$, $\eta\Lambda$, K \equiv , higher partial waves visibly contribute to the cross sections even in the threshold region.

→ consistent with the observation in Jackson et al., PRC91(2015)065208

Naïve expectation for S-wave dominance near the threshold sometimes does not hold !!

HK, Nakamura, Lee, Sato, PRC90(2014)065204

Kinematical (W, cosθ) coverage of available K⁻ p \rightarrow KN, πΣ, πΛ, ηΛ, KΞ data

Kinematical (W, cosθ) coverage of available K⁻ p \rightarrow KN, πΣ, πΛ, ηΛ, KΞ data

Importance of 2 \rightarrow 3 reactions: Dominance of cross sections at high W

Effects of 3-body channels on Y* resonance parameters are expected to be sizable.

However, at present essentially no differential cross section data are available for 2 → 3 reactions that can be used for detailed partial wave analyses !!