## Current status of $\wedge(1405)$



## Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

## Contents

## Current status of $\wedge(1405)$ and $\bar{K} N$ interaction

$-\wedge(1405)$ in $\pi \sum$ spectrum
S．Ohnishi，Y．Ikeda，T．Hyodo，W．Weise，PRC93， 025207 （2016）；
K．Miyahara．T．Hyodo，E．Oset，PRC92， $055204(2015)+$ in preparation
S．Ohnishi，Y．Ikeda，T．Hyodo，W．Weise，PRC93， 025207 （2016）；
K．Miyahara．T．Hyodo，E．Oset，PRC92， $055204(2015)+$ in preparation

## Structure of $\wedge(1405)$

－ $\bar{K} N$ molecule？
K．Miyahara．T．Hyodo，PRC93， 015201 （2016）；
Y．Kamiya，T．Hyodo，PRC93， 035203 （2016）＋arXiv：1607．01899［hep－ph］ 2


## 

## Y．Kamiya，K．Miyahara，S．Ohnishi，Y．Ikeda，T．Hyodo，E．Oset，W．Weise， NPA954， 41 （2016） <br> －Recent experimental achievements <br> －Systematic analysis in chiral dynamics <br> Y．Ikeda，T．Hyodo，W．Weise，PLB 706， 63 （2011）；NPA 88198 （2012） <br> $$
-
$$

N


Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) $)_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U ( 3 ) _ { \mathrm { V } }}$
- massive by strange quark: $\mathrm{m}_{\kappa} \sim 496 \mathrm{MeV}$
-> spontaneous/explicit symmetry breaking
$\bar{K} N$ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)
- is coupled with $\pi \Sigma$ channel
- generates $\wedge(1405)$ below threshold

molecule three-quark
- is fundamental building block for $\overline{\mathrm{K}}$-nuclei, $\overline{\mathrm{K}}$ in medium, ... ${ }_{3}$



## SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

EM int.

strong int.



EM value


- shift and width of atomic state $<\rightarrow$ K-p scattering length
U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Direct constraint on the $\bar{K} N$ interaction at fixed energy

Recent experimental achievements

## $\pi \Sigma$ invarint mass spectra

$\pi \Sigma$ spectrum before 2008: single mode, no absolute values
R.J. Hemingway, Nucl. Phys. B253, 742 (1985)

After 2008: $\gamma p->K^{+}(\pi \Sigma)^{0}$ LEPS, CLAS, pp -> $K^{+} p(\pi \Sigma)^{0}$ HADES
M. Niiyama, et al., Phys. Rev. C78, 035202 (2008);
K. Moriya, et al., Phys. Rev. C87, 035206 (2013);
G. Agakishiev, et al., Phys. Rev. C87, 025201 (2013)


Cross sections in different charge modes are available.

Systematic analysis in chiral dynamics

## Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- K $N$ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{\mathrm{K}} \mathrm{N}$ threshold: indirect constraints

- $\pi \Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)


Systematic analysis in chiral dynamics

## Construction of the realistic amplitude

Chiral coupled-channel approach with systematic $\chi^{2}$ fitting
Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)


1) TW term

$\mathcal{O}(p)$
6 cutoffs

TW model
2) Born terms


TWB model
3) NLO terms


7 LECs

NLO model

Systematic analysis in chiral dynamics

## Best-fit results



## cross sections








## SIDDHARTA is consistent with cross sections (c.f. DEAR).

Systematic analysis in chiral dynamics

## Comparison with SIDDHARTA

|  | TW | TWB | NLO |
| :--- | :--- | :--- | :--- |
| $X^{2} /$ d.o.f. | 1.12 | 1.15 | 0.957 |



TW and TWB are reasonable, while best-fit requires NLO.

Systematic analysis in chiral dynamics

## Subthreshold extrapolation

## Uncertainty of $\bar{K} N \rightarrow \overline{\mathrm{~K} N}(\mathrm{I}=0)$ amplitude below threshold


Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,

Nucl. Phys. A954, 41(2016)

- c.f. without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)



SIDDHARTA is essential for subthreshold extrapolation.

Systematic analysis in chiral dynamics

## Extrapolation to complex energy: two poles

Two poles: superposition of two states
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003);
T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- Higher energy pole at 1420 MeV , not at 1405 MeV
- Attractions of WT in 1 and 8 ( $\bar{K} N$ and $\pi \Sigma$ ) channels




## NLO analysis confirms the two-pole structure.

Systematic analysis in chiral dynamics

## Remaining ambiguity

$\overline{\mathrm{K}} N$ interaction has two isospin components ( $|=0|=$,1 ).

$$
a\left(K^{-} p\right)=\frac{1}{2} a(I=0)+\frac{1}{2} a(I=1)+\ldots, \quad a\left(K^{-} n\right)=a(I=1)+\ldots
$$



Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41(2016)

Relatively large uncertainty in the $1=1$ sector

- We need more constraints (<- kaonic deuterium?)

Systematic analysis in chiral dynamics

## Analyses by other groups

Further studies with NLO + $\chi^{2}$ analysis + SIDDHARTA data

- Bonn group
M. Mai, U.-G. Meissner, Nucl. Phys. A900, 51 (2013)


- Murcia group
Z.H. Guo, J.A. Oller, Phys. Rev. C87, 035202 (2013)


~13 parameters $\rightarrow$ several local minima

"exotic" solution by Bonn group (second pole above $\bar{K} N$ )?

Systematic analysis in chiral dynamics

## Constraints from the $\pi \Sigma$ spectrum

## Combined analysis of scattering data $+\pi \Sigma$ spectrum

M. Mai, U.-G. Meissner, Eur. Phys. J. A 51, 30 (2015)

- a simple model for the photoproduction $\gamma p->K+(\pi \Sigma)^{0}$
- CLAS data of the $\pi \Sigma$ spectrum



## $\rightarrow>$ The "exotic" solution is excluded.

## Pole positions of $\wedge(1405)$

## Mini review in PDG2016

C. Patrignani, et al., Chin. Phys. C40, 100001 (2016)

## POLE STRUCTURE OF THE $\Lambda$ (1405) REGION

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness $S=-1$ and isospin $I=0$. It is the archetype of what is called a dynamically gener-

| approach | pole $1[\mathrm{MeV}]$ | pole $2[\mathrm{MeV}]$ |
| :--- | :--- | :--- | :--- |
| Refs. 11,12, NLO | $1424_{-23}^{+7}-i 26_{-14}^{+3}$ | $1381_{-6}^{+18}-i 81_{-8}^{+19}$ |
| Ref. 14, Fit II | $1421_{-2}^{+3}-i 19_{-5}^{+8}$ | $1388_{-9}^{+9}-i 114_{-25}^{+24}$ |
| Ref. 15, solution $\# 2$ | $1434_{-2}^{+2}-i 10_{-1}^{+2}$ | $1330_{-5}^{+4}-i 56_{-11}^{+17}$ |
| Ref. 15, solution $\# 4$ | $1429_{-7}^{+8}-i 12_{-3}^{+2}$ | $1325_{-15}^{+15}-i 90_{-18}^{+12}$ |

## converge around 1420 still some deviations

[11,12] Ikeda-Hyodo-Weise, [14] Guo-Oller, [15] Mai-Meissner
$\Lambda(1405)$ in $\pi \Sigma$ spectrum

## $\pi \Sigma$ spectra and KN interaction

Can $\pi \Sigma$ spectra constrain the MB amplitude?

- Yes, but not directly.
$\wedge(1405)$ in production (general):

reaction model MB amplitude
$-\pi \Sigma$ spectra depend on the reaction (ratio of $\bar{K} N / \pi \Sigma$ in the intermediate state, interference with $\mathrm{I}=1, \ldots$ ).
—> Detailed model analysis for each reaction
$\wedge(1405)$ in $\pi \Sigma$ spectrum


## K-d reaction

J-PARC E31 experiment: K-d -> $n(\pi \Sigma)^{0} @ P_{k-}=1 \mathbf{G e V}$

- truncated two-step approaches
D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009); A47, 42 (2011);
K. Miyagawa, J. Haidenbauer, Phys. Rev. C85, 065201 (2012);
J. Yamagata-Sekihara, T. Sekihara, D. Jido, PTEP 043D02 (2013)


Full Faddeev(AGS) calculation with relativistic kinematics


+ infinitely many diagrams
S. Ohnishi, Y. Ikeda, T. Hyodo, W. Weise, Phys. Rev. C93, 025207 (2016)
$\wedge(1405)$ in $\pi \Sigma$ spectrum


## $\Lambda_{c}$ weak decay

Weak decay of $\Lambda_{c} \rightarrow \pi^{+} \mathrm{MB}(\mathrm{MB}=\pi \Sigma, \bar{K} N)$
K. Miyahara. T. Hyodo, E. Oset, Phys. Rev. C92, 055204 (2015)

- final state interaction of MB generates $\wedge(1405)$
- dominant process (CKM, $\mathrm{N}_{\mathrm{c}}$ counting, diquark correlation) filters the MB pair in $\mathrm{I}=0$.



Clean $\wedge(1405)$ signal can be found in the charged $\pi \Sigma$ modes.

KN molecule?

## $\overline{\mathrm{K}} \mathrm{N}$ molecule

Structure of $\wedge(1405)$ : three-quark or meson-baryon?

- constituent quark model: too light? N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)
- vector meson exchange: well reproduce
R.H. Dalitz, T.C. Wong, G. Rajasekaran Phys. Rev. 153, 1617 (1967)


## Recent lattice QCD study

J. Hall, et al., Phys. Rev. Lett. 114, 132002 (2015)


KN molecule?

## $\overline{\mathrm{K}}$ N potential

## Local K $N$ potential $\rightarrow$ wave function

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- Equivalent amplitude on the real axis
- Single-channel, complex, energy-dependent


## Realistic K $N$ potential for NLO with SIDDHARTA ( $\mathrm{X}^{2} / \mathrm{dof} \sim 1$ )

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Substantial distribution at $r>1 \mathbf{f m}$
- root mean squared radius

$$
\sqrt{\left\langle r^{2}\right\rangle}=1.44 \mathrm{fm}
$$



The size of $\wedge(1405)$ is much larger than ordinary hadrons.

## Compositeness

Model-independent relation of compositeness $X<-\left(B, a_{0}\right)$
S. Weinberg, Phys. Rev. 137, B672 (1965); V. Baru, et al., Phys. Lett. B 586, 53 (2004)

- Generalization to quasi-bound states: $\mathrm{X}<-$ (Е⿺в, $\mathrm{a}_{0}$ )
Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016) + arXiv:1607.01899 [hep-ph]

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\mathrm{typ}}}{R}\right|\right)+\sqrt{\frac{\mu^{\prime 3}}{\mu^{3}}} \mathcal{O}\left(\left|\frac{l}{R}\right|^{3}\right)\right\}, \quad R=1 / \sqrt{2 \mu E_{Q B}}
$$

- NLO Analyses of $\wedge(1405)$ with SIDDHARTA ( $X^{2} /$ d.o.f. $\sim 1$ )

| Ref. | $E_{Q B}(\mathrm{MeV})$ | $a_{0}(\mathrm{fm})$ | $X_{\bar{K} N}$ | $\tilde{X}_{\bar{K} N}$ | $U$ | $\left\|r_{e} / a_{0}\right\|$ |
| :---: | ---: | :--- | :--- | ---: | :--- | ---: |
| $[43]$ | $-10-i 26$ | $1.39-i 0.85$ | $1.2+i 0.1$ | 1.0 | 0.5 | 0.2 |
| $[44]$ | $-4-i 8$ | $1.81-i 0.92$ | $0.6+i 0.1$ | 0.6 | 0.0 | 0.7 |
| $[45]$ | $-13-i 20$ | $1.30-i 0.85$ | $0.9-i 0.2$ | 0.9 | 0.1 | 0.2 |
| $[46]$ | $2-i 10$ | $1.21-i 1.47$ | $0.6+i 0.0$ | 0.6 | 0.0 | 0.7 |
| $[46]$ | $-3-i 12$ | $1.52-i 1.85$ | $1.0+i 0.5$ | 0.8 | 0.6 | 0.4 |

[43] Ikeda-Hyodo-Weise, [44,46] Mai-Meissner, [45] Guo-Oller $\wedge(1405)$ is a $\bar{K} N$ molecule. <- observable quantities

## Summary: ^(1405)

The $\wedge(1405)$ in $\bar{K} N$ scattering is well understood ( $\mathrm{X}^{2} /$ d.o.f. $\sim 1$ ) by NLO chiral coupled-channel approach with accurate K-p scattering length.
Reliable reaction model will be important to analyze precise $\pi \Sigma$ mass spectra.
Various analyses (lattice, realistic potential, compositeness relation) consistently indicate that the $\wedge(1405)$ is a $\overline{\mathrm{K}} N$ molecule. ${ }^{N(1040)}$



8


