Hadron Physics at BESIII **Tianjue Min** Institute of High Energy Physics On Behalf of the BESIII Collaboration 2016 JAEA/ASRC Reimei Workshop: New Exotic Hadron Matter Oct. 25th, Inha University ### **BEPCII** and **BESIII** **BESIII** Beam energy: 1.0 ~ 2.3 GeV Luminosity: 1.0×10³³ cm⁻²s⁻¹ (reached in April 5th, 2016) 2004: BEPCII upgrade 2008: test run 2009 ~ now: physics run Hadron Physics at BESIII ### **BEPCII** and **BESIII** #### **Super-Conducting Magnet** 1.0 T (2009) 0.9 T(2012) #### **Electromagnetic Calorimeter** #### (EMC) CsI (TI) $\sigma_{\rm E}/\sqrt{\rm E}$ = 2.5% (1 GeV) $\sigma_{\rm z, \phi}$ = 0.5 - 0.7 cm/ $\sqrt{\rm E}$ #### μ Counter (MUC) 8 - 9 layers RPC $\delta_{R\Phi}$ = 1.4 cm $^{\sim}$ 1.7 cm ### **BEPCII** and **BESIII** World largest J/ ψ , ψ (3686), ψ (3770), ... Produced directly from e⁺e⁻ annihilation: an ideal factory to study hadron spectroscopy ### Multi-quark state, Glueball, Hybrid Conventional hadrons consist of 2 or 3 quarks • Meson: qq • Bayron: qqq **Constituent Quark Model** QCD allows hadrons of other forms: Multi-quark state: >= 4 quarks • Glueball: gg, ggg, ... • Hybrid: qqg, qqqg, ... **Lots of candidates** Not established yet Searching for new forms of hadrons provide test of QCD ### Recent results on new hadrons from BESIII - X(pp̄) and X(1835) - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ and determination of J^{PC} of X(1835) - Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Glueball searches - Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$ - Z_c structures ## $X(p\overline{p})$ and X(1835) - Discovered by BESII in $J/\psi \rightarrow \gamma p\bar{p}$ - Confirmed by BESIII and CLEO-c in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p\bar{p}$ - Confirmed by BESIII in $J/\psi \rightarrow \gamma p\bar{p}$ - 0-+ - $M = 1832^{+19}_{-5}{}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$ - $\Gamma = 13 \pm 19 \text{ MeV}/c^2$ (< 76 MeV/ c^2 @ 90% C.L.) #### Phys. Rev. Lett. 91, 022001 #### Phys. Rev. Lett. 106, 072002 #### $\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi, J/\psi\rightarrow\gamma p\overline{p}$ Phys. Rev. D 82, 092002 ## $X(p\overline{p})$ and X(1835) - Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ $$\checkmark$$ M = 1836.5 \pm 3.0^{+5.6}_{-2.1} MeV/ c^2 $$\checkmark \Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$$ ✓ Angular distribution is consistent with 0⁻¹ Hadron Physics at BESIII # Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ - Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012 - Clear structure on mass spectrum of $K_SK_S\eta$ around 1.85 GeV/ c^2 - Strongly correlated to f₀(980) - PWA for M(K_sK_s) < 1.1 GeV/ c^2 #### Phys. Rev. Lett. 115, 091803 ### Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ - X(1560) - J^{PC} : 0⁻⁺; $X(1560) \rightarrow K_S K_S \eta$ (> 8.9 σ) - $M = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$ - $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}/c^2$ - Consistent with $\eta(1405)/\eta(1475)$ within 2.0 σ - X(1835) - JPC: 0-+ - $X(1835) \rightarrow K_S K_S \eta$ (> 12.9 σ), dominated by $f_0(980)$ production - $M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$ - $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$ - Consistent with the values obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - $\mathfrak{B}(J/\psi \rightarrow \gamma X(1835)) \cdot \mathfrak{B}(X(1835) \rightarrow K_S K_S \eta) = (3.31^{+0.33+1.96}_{-0.30-1.29}) \times 10^{-5}$ Phys. Rev. Lett. 115, 091803 # $X(p\overline{p})$ and X(1835) | $X(p\overline{p})$ | X(1835) | | | |---|--|--|--| | 0-+ | 0-+ | | | | $M = 1832^{+19}_{-5}{}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$ | $M = 1836.5 \pm 3.0^{+5.6}_{-2.1} \text{ MeV}/c^2$ | | | | $\Gamma = 13 \pm 19 \text{ MeV}/c^2 (< 76 \text{ MeV}/c^2 @ 90\% \text{ C.L.})$ | $\Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV/c}^2$ | | | | pp̄ bound state?
 | p̄p bound state?
η' excitation?
glueball? | | | | | ••• | | | | The SAME state? | | | | Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Use 1.09×10^9 J/ ψ events collected by BESIII in 2012 - Two decay modes of η' - η'→γπ⁺π⁻ - $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$ - Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ c^2 - A significant distortion of the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold 93000 02500 pp threshold Ö₂₀₀₀ \$1500 1000 1.4 1.6 1.8 2.2 2.4 2.6 2.8 $M \ln^{1} \pi^{\dagger} \pi^{-1} (GeV/c^{2})$ 🛨 Data 1400 PHSP MC 0001 We/C₂ pp threshold 008 (5 200 2 2.2 2.4 2.6 2.8 1.4 1.6 $M[\eta'\pi^{\dagger}\pi^{-}]$ (GeV/c²) Data - PHSP MC Background 4000 %3500 Phys. Rev. Lett. 117, 042002 # Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Simultaneous fits to two η' decay modes - Simple Breit-Wigner function fails in describing the $\eta' \pi^+ \pi^-$ line shape near the $p \bar{p}$ mass threshold - Two typical circumstances where an abrupt distortion of a resonance's line shape shows up - Threshold structure caused by the opening of an additional $p\overline{p}$ decay mode - Use the Flatté formula for the line shape - Interference between two resonances - Use coherent sum of two Breit-Wigner amplitudes for the line shape $\log \mathcal{L} = 630503.3$ # Anomalous line shape of $\eta' \pi^{\dagger} \pi^{-}$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^{\dagger} \pi^{-}$ Use the Flatté formula for the line shape • $$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}$$ • $$\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$$ • $g_{var{v}}^2/g_0^2$ is the ratio between the coupling strength to the $par{p}$ channel and the sum of all other channels | The state around 1.85 GeV/c ² | | |--|---| | ${\mathcal M}$ (MeV/ c^2) | $1638.0^{+121.9+127.8}_{-121.9-254.3}$ | | g_0^2 ((GeV/ c^2) 2) | 93.7 +35.4 +47.6 | | $g_{ m p\overline{p}}^2/g_0^2$ | $2.31_{-0.37-0.60}^{+0.37+0.83}$ | | M_{pole} (MeV/ c^2) * | 1909 . 5 ^{+15.9} ^{+9.4} _{-15.9} ^{-27.5} | | Γ_{pole} (MeV/ c^2) * | $\mathbf{273.5} {}^{+21.4}_{-21.4} {}^{+6.1}_{-64.0}$ | | Branching Ratio | $(3.93^{+0.38+0.31}_{-0.38-0.84}) \times 10^{-4}$ | Phys. Rev. Lett. 117, 042002 $\log \mathcal{L} = 630549.5$ Significance of $g_{ m p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ X(1920) is needed with 5.7 σ A pp moleculelike state? ^{*} The pole nearest to the $p\bar{p}$ mass threshold # Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ Use coherent sum of two Breit-Wigner amplitudes • $$T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$$ | X(1835) | | |----------------------------------|---| | M (MeV/ c^2) | 1825.3 +2.4 +17.3 | | Γ (MeV/ c^2) | $245.2^{+14.2+4.6}_{-12.6-9.6}$ | | B.R. (constructive interference) | $(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$ | | B.R. (destructive interference) | $(3.72^{+0.21+0.18}_{-0.21-0.35}) \times 10^{-4}$ | ## A pp bound state? | X(1870) | | |----------------------------------|---| | M (MeV/ c^2) | $1870.2^{+2.2+2.3}_{-2.3-0.7}$ | | Γ (MeV/ c^2) | 13. $0^{+7.1}_{-5.5}^{+2.1}_{-3.8}$ | | B.R. (constructive interference) | $(2.03^{+0.12+0.43}_{-0.12-0.70}) \times 10^{-7}$ | | B.R. (destructive interference) | $(1.57^{+0.09+0.49}_{-0.09-0.86}) \times 10^{-5}$ | #### Phys. Rev. Lett. 117, 042002 $\log \mathcal{L} = 630540.3$ Significance of X(1870) is larger than 7σ X(1920) is not significant # Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Both models fit the data well with almost equally good quality - Cannot distinguish them with current data - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold - Support the existence of a $p\bar{p}$ molecule-like state or bound state - To elucidate further the nature of the state - More J/ψ data - Study line shapes in other decay modes - J/ψ→γp̄p̄ - $J/\psi \rightarrow \gamma K_S K_S \eta$ - ... ### **Glueballs** - Formed by gluon-gluon interaction: non-Abel gauge self-interaction - Predicted by QCD - Not established in experiment - LQCD prediction - 0^{++} ground state: $1^2 \text{ GeV}/c^2$ - 2⁺⁺ ground state: 2.3^2 .4 GeV/ c^2 - 0⁻⁺ ground state: 2.3 $^{\sim}$ 2.6 GeV/ c^2 - Radiative J/ψ decays are believed to be an ideal place to search for glueballs #### Phys. Rev. D 73, 014516 ### Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Use 1.3×10⁹ J/ψ events collected by BESIII in 2009 and 2012 - $\pi^0\pi^0$ system - Very clean - Large statistics and many open channels - Many broad and overlapping resonances (parameterization challenging) - Model independent PWA (MIPWA) #### Phys. Rev. D 92, 052003 - ✓ More than 440,000 reconstructed events - ✓ Background level ~ 1.8% ### Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Solution 1 - Solution 2 Phys. Rev. D 92, 052003 - ✓ Extract amplitudes in each $M(\pi^0\pi^0)$ mass bin - ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c² - ✓ Multi-solution problem in MIPWA is usually unavoidable. - ✓ Only Model Dependent PWA of global PWA fit can rigerously extract resonance parameters, but cross-check between MDPWA and MIPWA is helpful. Hadron Physics at BESIII ### PWA of $J/\psi \rightarrow \gamma \phi \phi$ - Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012 - PWA procedure - Covariant tensor formalism - Data-driven background subtraction - Resonances are parameterized by relativistic Breit-Wigner with constant width - Resonances with significance $> 5 \sigma$ are selected as components in solution Phys. Rev. D 93, 112011 Hadron Physics at BESIII ## PWA of $J/\psi \rightarrow \gamma \phi \phi$ Pesudoscalar: $\eta(2225)$ confirmed $\eta(2100)$ and X(2500) **Dominant** **Tensor:** f₂(2010), f₂(2300), f₂(2340) $f_2(2340)$: tensor glueball? | Resonance | ${\rm M}({\rm MeV}/c^2)$ | $\Gamma({\rm MeV}/c^2)$ | B.F. $(\times 10^{-4})$ | Sig. | |---------------|----------------------------------|-----------------------------------|-----------------------------------|--------------| | $\eta(2225)$ | $2216^{+4}_{-5}{}^{+18}_{-11}$ | $185^{+12}_{-14}{}^{+44}_{-17}$ | $(2.40 \pm 0.10^{+2.47}_{-0.18})$ | 28.1σ | | $\eta(2100)$ | $2050^{+30}_{-24}{}^{+77}_{-26}$ | $250^{+36}_{-30}{}^{+187}_{-164}$ | $(3.30 \pm 0.09^{+0.18}_{-3.04})$ | 21.5σ | | X(2500) | $2470^{+15}_{-19}{}^{+63}_{-23}$ | $230^{+64}_{-35}{}^{+53}_{-33}$ | $(0.17 \pm 0.02^{+0.02}_{-0.08})$ | 8.8σ | | $f_0(2100)$ | 2102 | 211 | $(0.43 \pm 0.04^{+0.24}_{-0.03})$ | 24.2σ | | $f_2(2010)$ | 2011 | 202 | $(0.35 \pm 0.05^{+0.28}_{-0.15})$ | 9.5σ | | $f_2(2300)$ | 2297 | 149 | $(0.44 \pm 0.07^{+0.09}_{-0.15})$ | 6.4σ | | $f_2(2340)$ | 2339 | 319 | $(1.91 \pm 0.07^{+0.72}_{-0.69})$ | 10.7σ | | 0^{-+} PHSP | | | $(2.74 \pm 0.15^{+0.16}_{-1.48})$ | 6.8σ | | | | | | | Phys. Rev. D 93, 112011 Well consistent with the results from Model-independent PWA # $Z_c(3900)^{\pm}$ - $e^+e^-\rightarrow \pi^+\pi^-J/\psi$ - 525 pb⁻¹ data at \sqrt{s} = 4.26 GeV/ c^2 - Born Xsection consistent with the Y(4260) production - $Z_c(3900)^{\pm}$ - M = $3899.0 \pm 3.6 \pm 4.9 \text{ MeV}/c^2$ - $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}/c^2$ - Charged, decays to J/ψ - Contains ud(du) and cc - At least four quarks? - Close to DD* mass threshold - Threshold effect? #### Phys. Rev. Lett. 110, 252001 $$\checkmark \frac{\sigma(e^{+}e^{-}\to\pi^{\pm}Z_{c}(3900)^{\mp}\to\pi^{+}\pi^{-}J/\psi)}{\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi)} = (21.5\pm3.3\pm7.5)\%$$ - ✓ Also confirmed by Belle and CLEO-c - Phys. Rev. Lett. 110, 252002 - Phys. Lett. B 727, 366 ### **Z**_c structures at BESIII | State | Mass (MeV/ c^2) | Width (MeV/ c^2) | Decay | Process (e⁺e⁻→) | Ref. | |------------------------------------|--|------------------------------------|-------------------------------------|--|-----------------| | $Z_c(3900)^{\pm}$ | $3899.0 \pm 3.6 \pm 4.9$ | $46\pm10\pm20$ | π^{\pm} J/ ψ | π ⁺ π ⁻ J/ψ | PRL 110, 252001 | | Z _c (3900) ⁰ | $3894.8 \pm 2.3 \pm 3.2$ | $29.6 \pm 8.2 \pm 8.2$ | π^0 J/ ψ | $\pi^0\pi^0$ J/ ψ | PRL 115, 252003 | | 7 (200E\± | $3883.9\pm1.5\pm4.2$ Single D tag | $24.8\pm3.3\pm11.0$ Single D tag | $({\sf D}\overline{{\sf D}}^*)^\pm$ | $(\mathrm{D}\overline{\mathrm{D}}^*)^\pm\pi^\mp$ | PRL 112, 022001 | | Z _c (3885) [±] | 3881.7 \pm 1.6 \pm 2.1
Double D tag | $26.6\pm2.0\pm2.3$
Double D tag | | | PRD 92, 092006 | | Z _c (3885) ⁰ | $3885.7^{+4.3}_{-5.7}\pm8.4$ | $35^{+11}_{-12}\pm15$ | $(D\overline{D}^*)^0$ | $({ m D}ar{ m D}^*)^0\pi^0$ | PRL 115, 222002 | | Z _c (4020) [±] | 4022.9±0.8±2.7 | 7.9±2.7±2.6 | $\pi^{\pm}h_c$ | π ⁺ π ⁻ h _c | PRL 111, 242001 | | Z _c (4020) ⁰ | $4023.9 \pm 2.2 \pm 3.8$ | Fixed | $\pi^0 h_c$ | $\pi^0\pi^0 h_c$ | PRL 113, 212002 | | $Z_{c}(4025)^{\pm}$ | $4026.3 \pm 2.6 \pm 3.7$ | $24.8 \pm 5.6 \pm 7.7$ | $(D^*\overline{D}^*)^{\pm}$ | $(D^*\overline{D}^*)^{\pm}\pi^{\mp}$ | PRL 112, 132001 | | Z _c (4025) ⁰ | $4025.5^{+2.0}_{-4.7}\pm3.1$ | $23.0 \pm 6.0 \pm 1.0$ | $(D^*\overline{D}^*)^0$ | $(D^*\overline{D}^*) \pi^0$ | PRL 115, 182002 | - ✓ Charged and neutral Z_c's are consistent with isospin triplets expectations. - ✓ Mass and widths of Z_c(3900)/Z_c(3885) and Z_c(4020)/Z_c(4025) are consistent within 2σ → the same states? ## Nature of Z_c structures - Theoretical interepretation - Tetraquark states? - $D^{(*)}\overline{D}^*$ molecule states? - Charmonium hybrid? - Threshold effect? - Further studies are needed - PWA - Production - Decay - Test theoretical models - • ### Summary - Highlights of latest results on searching for new forms of hadrons at BESIII - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ - New decay mode of $X(1835) \rightarrow K_S K_S \eta$ and J^{PC} of X(1835) is determined to be 0⁻⁺ - Observation of anomalous $\eta' \pi^+ \pi^-$ line shape near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ - Support the existence of a $p\bar{p}$ bound state or molecule-like state - Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Useful information of 0⁺⁺ and 2⁺⁺ components - Partial wave analysis of J/ψ→γφφ - 0⁻⁺ and 2⁺⁺ glueball candidate? - Observation of Z_c(3900)/Z_c(3885), Z_c(4020)/Z_c(4025) - Multi-quark candidates? - More results are expected in the future! ### Structures around 1.8 GeV/ c^2 # $e^+e^-\rightarrow \pi^{\pm}Z_c(3900)^{\mp}\rightarrow \pi^+\pi^-\omega$ #### Phys. Rev. D 92, 032009 also happen to threshold effect **NO threshold effect** #### No significant $Z_c \rightarrow \omega \pi$ is observed: $$\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.26 \text{ pb } @ 4.23 \text{ GeV}$$ $\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.18 \text{ pb } @ 4.26 \text{ GeV}$ $$\Gamma(Z_c^+ \rightarrow \pi^+ \omega) < 0.2\% \Gamma_{tot} \sim 60 \text{ keV}$$ Naive expectations from η_c decays, the partial width to an exclusive light hadron mode is typically ~500 keV #### Threshold effect cannot be ruled out