

Hadron Physics at BESIII

Tianjue Min


Institute of High Energy Physics

On Behalf of the BESIII Collaboration

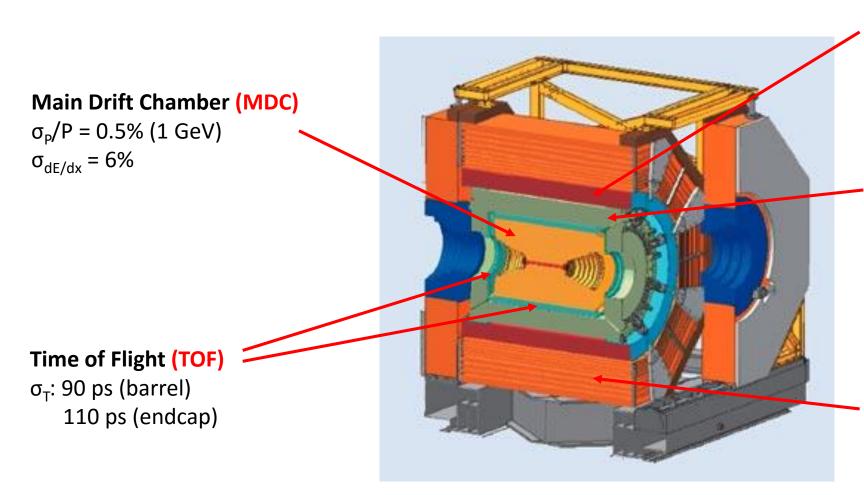
2016 JAEA/ASRC Reimei Workshop: New Exotic Hadron Matter Oct. 25th, Inha University

BEPCII and **BESIII**

BESIII

Beam energy: 1.0 ~ 2.3 GeV

Luminosity: 1.0×10³³ cm⁻²s⁻¹ (reached in April 5th, 2016)


2004: BEPCII upgrade

2008: test run

2009 ~ now: physics run

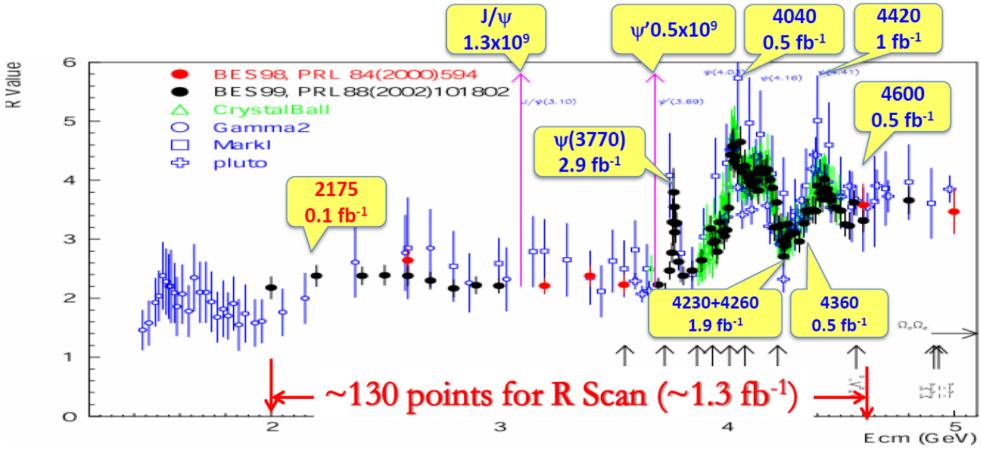
Hadron Physics at BESIII

BEPCII and **BESIII**

Super-Conducting Magnet

1.0 T (2009) 0.9 T(2012)

Electromagnetic Calorimeter


(EMC)

CsI (TI) $\sigma_{\rm E}/\sqrt{\rm E}$ = 2.5% (1 GeV) $\sigma_{\rm z, \phi}$ = 0.5 - 0.7 cm/ $\sqrt{\rm E}$

μ Counter (MUC)

8 - 9 layers RPC $\delta_{R\Phi}$ = 1.4 cm $^{\sim}$ 1.7 cm

BEPCII and **BESIII**

World largest J/ ψ , ψ (3686), ψ (3770), ...

Produced directly from e⁺e⁻ annihilation: an ideal factory to study hadron spectroscopy

Multi-quark state, Glueball, Hybrid

Conventional hadrons consist of 2 or 3 quarks

• Meson: qq

• Bayron: qqq

Constituent Quark Model

QCD allows hadrons of other forms:

Multi-quark state: >= 4 quarks

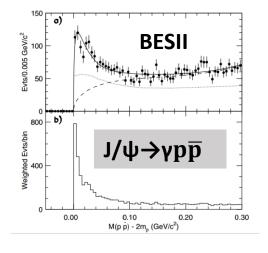
• Glueball: gg, ggg, ...

• Hybrid: qqg, qqqg, ...

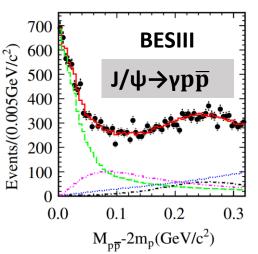
Lots of candidates

Not established yet

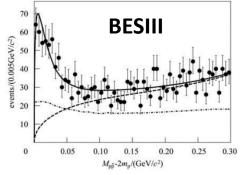
Searching for new forms of hadrons provide test of QCD

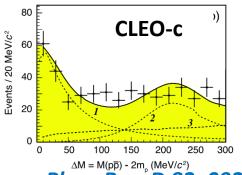

Recent results on new hadrons from BESIII

- X(pp̄) and X(1835)
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$ and determination of J^{PC} of X(1835)
 - Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- Glueball searches
 - Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$
- Z_c structures


$X(p\overline{p})$ and X(1835)

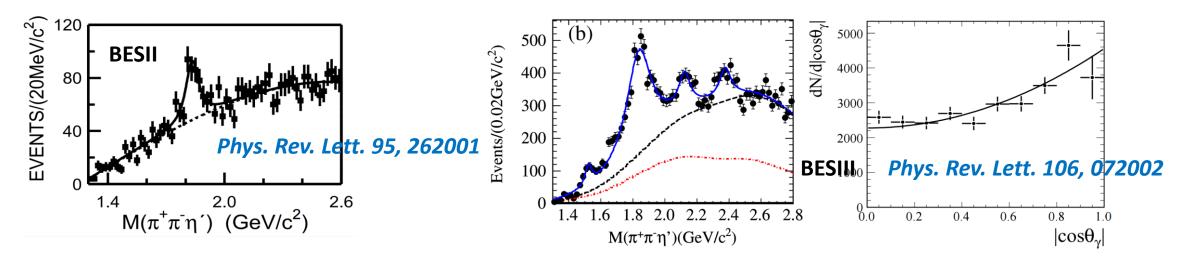
- Discovered by BESII in $J/\psi \rightarrow \gamma p\bar{p}$
- Confirmed by BESIII and CLEO-c in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p\bar{p}$
- Confirmed by BESIII in $J/\psi \rightarrow \gamma p\bar{p}$
 - 0-+
 - $M = 1832^{+19}_{-5}{}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$
 - $\Gamma = 13 \pm 19 \text{ MeV}/c^2$ (< 76 MeV/ c^2 @ 90% C.L.)


Phys. Rev. Lett. 91, 022001


Phys. Rev. Lett. 106, 072002

$\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi, J/\psi\rightarrow\gamma p\overline{p}$

Phys. Rev. D 82, 092002

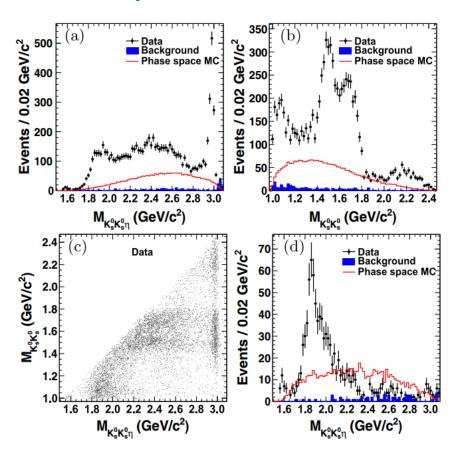

$X(p\overline{p})$ and X(1835)

- Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

$$\checkmark$$
 M = 1836.5 \pm 3.0^{+5.6}_{-2.1} MeV/ c^2

$$\checkmark \Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$$

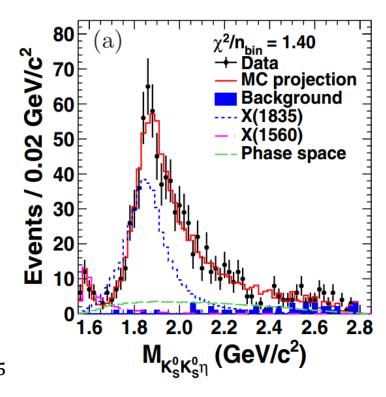
✓ Angular distribution is consistent with 0⁻¹



Hadron Physics at BESIII

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- Clear structure on mass spectrum of $K_SK_S\eta$ around 1.85 GeV/ c^2
- Strongly correlated to f₀(980)
- PWA for M(K_sK_s) < 1.1 GeV/ c^2


Phys. Rev. Lett. 115, 091803

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- X(1560)
 - J^{PC} : 0⁻⁺; $X(1560) \rightarrow K_S K_S \eta$ (> 8.9 σ)
 - $M = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$
 - $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}/c^2$
 - Consistent with $\eta(1405)/\eta(1475)$ within 2.0 σ
- X(1835)
 - JPC: 0-+
 - $X(1835) \rightarrow K_S K_S \eta$ (> 12.9 σ), dominated by $f_0(980)$ production
 - $M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$
 - $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$
 - Consistent with the values obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - $\mathfrak{B}(J/\psi \rightarrow \gamma X(1835)) \cdot \mathfrak{B}(X(1835) \rightarrow K_S K_S \eta) = (3.31^{+0.33+1.96}_{-0.30-1.29}) \times 10^{-5}$

Phys. Rev. Lett. 115, 091803

$X(p\overline{p})$ and X(1835)

$X(p\overline{p})$	X(1835)		
0-+	0-+		
$M = 1832^{+19}_{-5}{}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$	$M = 1836.5 \pm 3.0^{+5.6}_{-2.1} \text{ MeV}/c^2$		
$\Gamma = 13 \pm 19 \text{ MeV}/c^2 (< 76 \text{ MeV}/c^2 @ 90\% \text{ C.L.})$	$\Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV/c}^2$		
pp̄ bound state? 	p̄p bound state? η' excitation? glueball?		
	•••		
The SAME state?			

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Use 1.09×10^9 J/ ψ events collected by BESIII in 2012
- Two decay modes of η'
 - η'→γπ⁺π⁻
 - $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ c^2
- A significant distortion of the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold

93000 02500 pp threshold Ö₂₀₀₀ \$1500 1000 1.4 1.6 1.8 2.2 2.4 2.6 2.8 $M \ln^{1} \pi^{\dagger} \pi^{-1} (GeV/c^{2})$ 🛨 Data 1400 PHSP MC 0001 We/C₂ pp threshold 008 (5 200 2 2.2 2.4 2.6 2.8 1.4 1.6

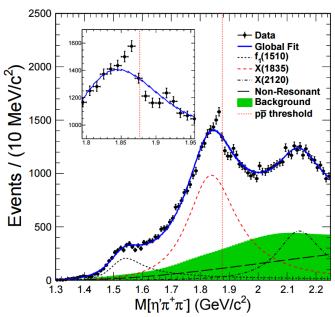
 $M[\eta'\pi^{\dagger}\pi^{-}]$ (GeV/c²)

Data

- PHSP MC

Background

4000


%3500

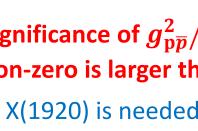
Phys. Rev. Lett. 117, 042002

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

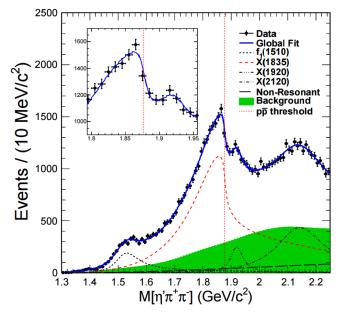
- Simultaneous fits to two η' decay modes
- Simple Breit-Wigner function fails in describing the $\eta' \pi^+ \pi^-$ line shape near the $p \bar{p}$ mass threshold
- Two typical circumstances where an abrupt distortion of a resonance's line shape shows up
 - Threshold structure caused by the opening of an additional $p\overline{p}$ decay mode
 - Use the Flatté formula for the line shape
 - Interference between two resonances
 - Use coherent sum of two Breit-Wigner amplitudes for the line shape

 $\log \mathcal{L} = 630503.3$

Anomalous line shape of $\eta' \pi^{\dagger} \pi^{-}$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^{\dagger} \pi^{-}$


Use the Flatté formula for the line shape

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}$$


•
$$\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$$

• $g_{var{v}}^2/g_0^2$ is the ratio between the coupling strength to the $par{p}$ channel and the sum of all other channels

The state around 1.85 GeV/c ²	
${\mathcal M}$ (MeV/ c^2)	$1638.0^{+121.9+127.8}_{-121.9-254.3}$
g_0^2 ((GeV/ c^2) 2)	93.7 +35.4 +47.6
$g_{ m p\overline{p}}^2/g_0^2$	$2.31_{-0.37-0.60}^{+0.37+0.83}$
M_{pole} (MeV/ c^2) *	1909 . 5 ^{+15.9} ^{+9.4} _{-15.9} ^{-27.5}
Γ_{pole} (MeV/ c^2) *	$\mathbf{273.5} {}^{+21.4}_{-21.4} {}^{+6.1}_{-64.0}$
Branching Ratio	$(3.93^{+0.38+0.31}_{-0.38-0.84}) \times 10^{-4}$

Phys. Rev. Lett. 117, 042002

 $\log \mathcal{L} = 630549.5$

Significance of $g_{
m p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ

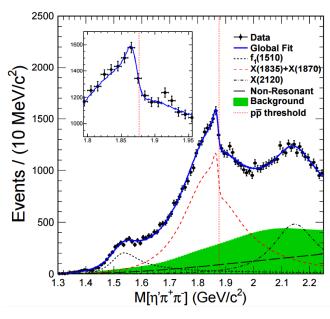
X(1920) is needed with 5.7 σ

A pp moleculelike state?

^{*} The pole nearest to the $p\bar{p}$ mass threshold

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Use coherent sum of two Breit-Wigner amplitudes


•
$$T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$$

X(1835)	
M (MeV/ c^2)	1825.3 +2.4 +17.3
Γ (MeV/ c^2)	$245.2^{+14.2+4.6}_{-12.6-9.6}$
B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72^{+0.21+0.18}_{-0.21-0.35}) \times 10^{-4}$

A pp bound state?

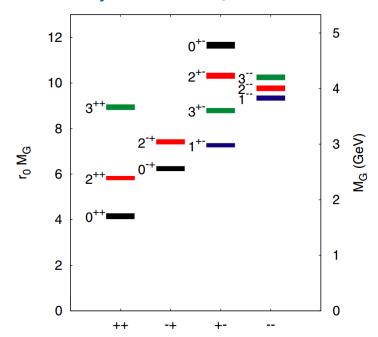
X(1870)	
M (MeV/ c^2)	$1870.2^{+2.2+2.3}_{-2.3-0.7}$
Γ (MeV/ c^2)	13. $0^{+7.1}_{-5.5}^{+2.1}_{-3.8}$
B.R. (constructive interference)	$(2.03^{+0.12+0.43}_{-0.12-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57^{+0.09+0.49}_{-0.09-0.86}) \times 10^{-5}$

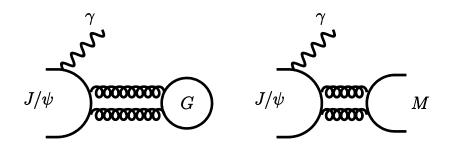
Phys. Rev. Lett. 117, 042002

 $\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7σ

X(1920) is not significant

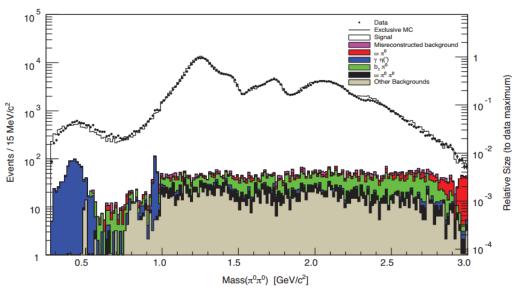

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$


- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
 - Support the existence of a $p\bar{p}$ molecule-like state or bound state
- To elucidate further the nature of the state
 - More J/ψ data
 - Study line shapes in other decay modes
 - J/ψ→γp̄p̄
 - $J/\psi \rightarrow \gamma K_S K_S \eta$
 - ...

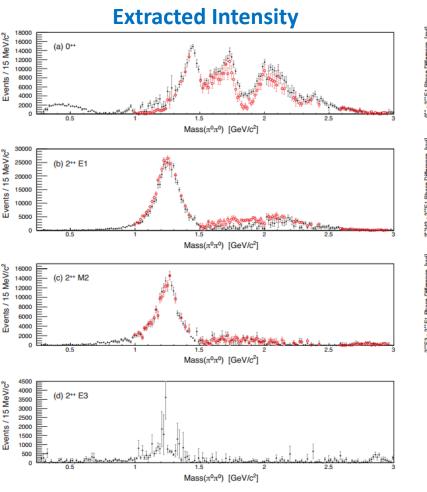
Glueballs

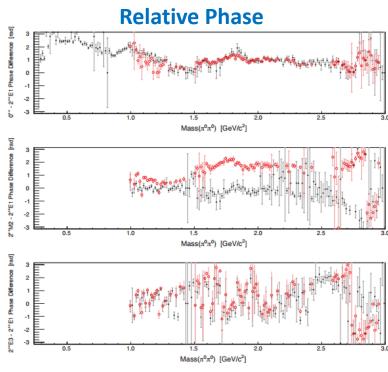
- Formed by gluon-gluon interaction: non-Abel gauge self-interaction
 - Predicted by QCD
 - Not established in experiment
- LQCD prediction
 - 0^{++} ground state: $1^2 \text{ GeV}/c^2$
 - 2⁺⁺ ground state: 2.3^2 .4 GeV/ c^2
 - 0⁻⁺ ground state: 2.3 $^{\sim}$ 2.6 GeV/ c^2
- Radiative J/ψ decays are believed to be an ideal place to search for glueballs

Phys. Rev. D 73, 014516



Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$


- Use 1.3×10⁹ J/ψ events collected by BESIII in 2009 and 2012
- $\pi^0\pi^0$ system
 - Very clean
 - Large statistics and many open channels
 - Many broad and overlapping resonances (parameterization challenging)
 - Model independent PWA (MIPWA)

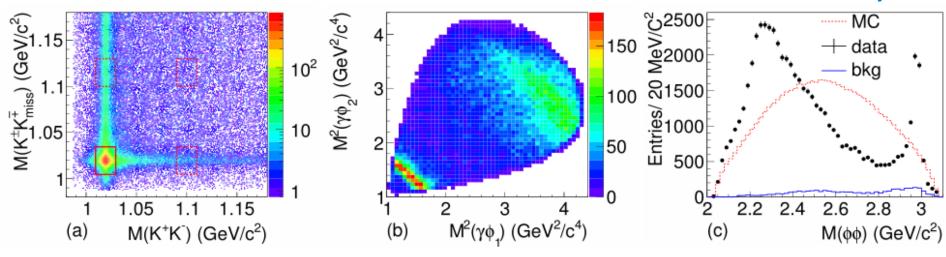

Phys. Rev. D 92, 052003

- ✓ More than 440,000 reconstructed events
- ✓ Background level ~ 1.8%

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

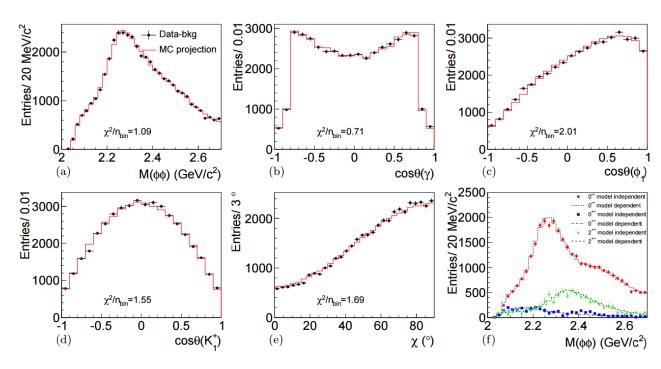
- Solution 1
- Solution 2

Phys. Rev. D 92, 052003


- ✓ Extract amplitudes in each $M(\pi^0\pi^0)$ mass bin
- ✓ Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- ✓ Multi-solution problem in MIPWA is usually unavoidable.
- ✓ Only Model Dependent PWA of global PWA fit can rigerously extract resonance parameters, but cross-check between MDPWA and MIPWA is helpful.

Hadron Physics at BESIII

PWA of $J/\psi \rightarrow \gamma \phi \phi$


- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure
 - Covariant tensor formalism
 - Data-driven background subtraction
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - Resonances with significance $> 5 \sigma$ are selected as components in solution

Phys. Rev. D 93, 112011

Hadron Physics at BESIII

PWA of $J/\psi \rightarrow \gamma \phi \phi$

Pesudoscalar:

 $\eta(2225)$ confirmed $\eta(2100)$ and X(2500)

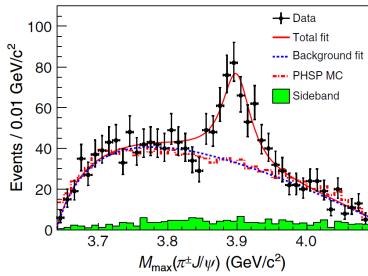
Dominant

Tensor:

f₂(2010), f₂(2300), f₂(2340)

 $f_2(2340)$: tensor glueball?

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	B.F. $(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36}_{-30}{}^{+187}_{-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43 \pm 0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91 \pm 0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ


Phys. Rev. D 93, 112011

 Well consistent with the results from Model-independent PWA

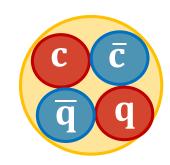
$Z_c(3900)^{\pm}$

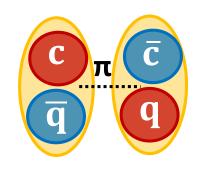
- $e^+e^-\rightarrow \pi^+\pi^-J/\psi$
 - 525 pb⁻¹ data at \sqrt{s} = 4.26 GeV/ c^2
 - Born Xsection consistent with the Y(4260) production
- $Z_c(3900)^{\pm}$
 - M = $3899.0 \pm 3.6 \pm 4.9 \text{ MeV}/c^2$
 - $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}/c^2$
 - Charged, decays to J/ψ
 - Contains ud(du) and cc
 - At least four quarks?
 - Close to DD* mass threshold
 - Threshold effect?

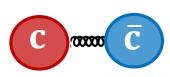
Phys. Rev. Lett. 110, 252001

$$\checkmark \frac{\sigma(e^{+}e^{-}\to\pi^{\pm}Z_{c}(3900)^{\mp}\to\pi^{+}\pi^{-}J/\psi)}{\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi)} = (21.5\pm3.3\pm7.5)\%$$

- ✓ Also confirmed by Belle and CLEO-c
 - Phys. Rev. Lett. 110, 252002
 - Phys. Lett. B 727, 366

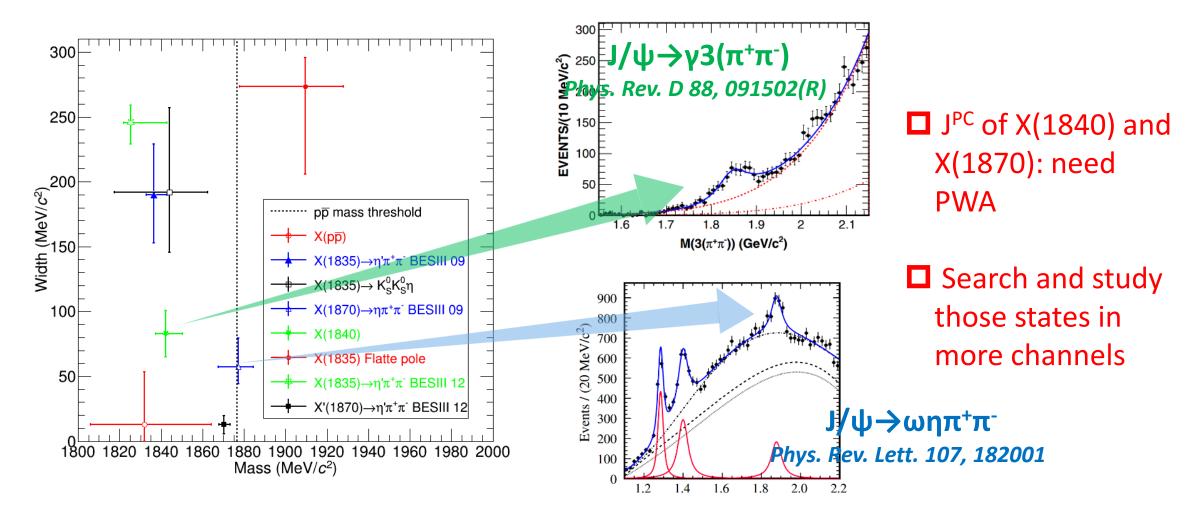

Z_c structures at BESIII


State	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	Process (e⁺e⁻→)	Ref.
$Z_c(3900)^{\pm}$	$3899.0 \pm 3.6 \pm 4.9$	$46\pm10\pm20$	π^{\pm} J/ ψ	π ⁺ π ⁻ J/ψ	PRL 110, 252001
Z _c (3900) ⁰	$3894.8 \pm 2.3 \pm 3.2$	$29.6 \pm 8.2 \pm 8.2$	π^0 J/ ψ	$\pi^0\pi^0$ J/ ψ	PRL 115, 252003
7 (200E\±	$3883.9\pm1.5\pm4.2$ Single D tag	$24.8\pm3.3\pm11.0$ Single D tag	$({\sf D}\overline{{\sf D}}^*)^\pm$	$(\mathrm{D}\overline{\mathrm{D}}^*)^\pm\pi^\mp$	PRL 112, 022001
Z _c (3885) [±]	3881.7 \pm 1.6 \pm 2.1 Double D tag	$26.6\pm2.0\pm2.3$ Double D tag			PRD 92, 092006
Z _c (3885) ⁰	$3885.7^{+4.3}_{-5.7}\pm8.4$	$35^{+11}_{-12}\pm15$	$(D\overline{D}^*)^0$	$({ m D}ar{ m D}^*)^0\pi^0$	PRL 115, 222002
Z _c (4020) [±]	4022.9±0.8±2.7	7.9±2.7±2.6	$\pi^{\pm}h_c$	π ⁺ π ⁻ h _c	PRL 111, 242001
Z _c (4020) ⁰	$4023.9 \pm 2.2 \pm 3.8$	Fixed	$\pi^0 h_c$	$\pi^0\pi^0 h_c$	PRL 113, 212002
$Z_{c}(4025)^{\pm}$	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	$(D^*\overline{D}^*)^{\pm}$	$(D^*\overline{D}^*)^{\pm}\pi^{\mp}$	PRL 112, 132001
Z _c (4025) ⁰	$4025.5^{+2.0}_{-4.7}\pm3.1$	$23.0 \pm 6.0 \pm 1.0$	$(D^*\overline{D}^*)^0$	$(D^*\overline{D}^*) \pi^0$	PRL 115, 182002


- ✓ Charged and neutral Z_c's are consistent with isospin triplets expectations.
- ✓ Mass and widths of Z_c(3900)/Z_c(3885) and Z_c(4020)/Z_c(4025) are consistent within 2σ → the same states?

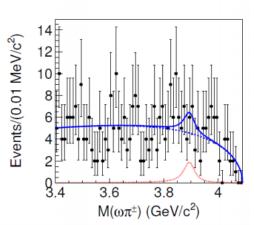
Nature of Z_c structures

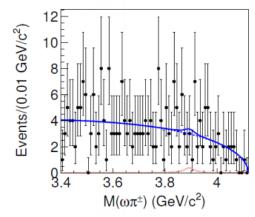
- Theoretical interepretation
 - Tetraquark states?
 - $D^{(*)}\overline{D}^*$ molecule states?
 - Charmonium hybrid?
 - Threshold effect?
- Further studies are needed
 - PWA
 - Production
 - Decay
 - Test theoretical models
 - •

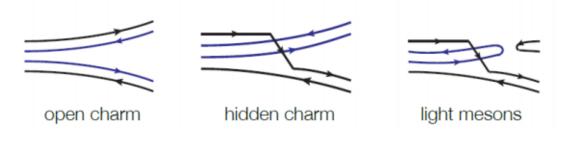


Summary

- Highlights of latest results on searching for new forms of hadrons at BESIII
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - New decay mode of $X(1835) \rightarrow K_S K_S \eta$ and J^{PC} of X(1835) is determined to be 0⁻⁺
 - Observation of anomalous $\eta' \pi^+ \pi^-$ line shape near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Support the existence of a $p\bar{p}$ bound state or molecule-like state
 - Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Useful information of 0⁺⁺ and 2⁺⁺ components
 - Partial wave analysis of J/ψ→γφφ
 - 0⁻⁺ and 2⁺⁺ glueball candidate?
 - Observation of Z_c(3900)/Z_c(3885), Z_c(4020)/Z_c(4025)
 - Multi-quark candidates?
- More results are expected in the future!


Structures around 1.8 GeV/ c^2




$e^+e^-\rightarrow \pi^{\pm}Z_c(3900)^{\mp}\rightarrow \pi^+\pi^-\omega$

Phys. Rev. D 92, 032009

also happen to threshold effect

NO threshold effect

No significant $Z_c \rightarrow \omega \pi$ is observed:

$$\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.26 \text{ pb } @ 4.23 \text{ GeV}$$
 $\sigma(e^+e^- \to \pi Z_c(3900) \to \pi(\omega\pi)) < 0.18 \text{ pb } @ 4.26 \text{ GeV}$

$$\Gamma(Z_c^+ \rightarrow \pi^+ \omega) < 0.2\% \Gamma_{tot} \sim 60 \text{ keV}$$

Naive expectations from η_c decays, the partial width to an exclusive light hadron mode is typically ~500 keV

Threshold effect cannot be ruled out