Recent Results of J-PARC E13

26th, October, 2016 黎明 Workshop at Inha University

YANG Seongbae

Department of Physics and Astronomy Seoul National University

1. Gamma-Ray Spectroscopy of Λ Hypernuclei

//W Interaction and **//** Hypernucleus

■ //W interaction

It is the first step to understand the general baryon-baryon interaction.

■ /1 hypernucleus

Due to the short life time of Λ , a scattering experiment is impossible for the ΛN interaction. In this case, a spectroscopy of Λ hypernucleus is the most powerful tool.

Gamma-Ray Spectroscopy of /1 Hypernuclei

■ Gamma-ray spectroscopy of /1 hypernuclei

 \rightarrow By measuring energies of the γ rays, the split energy spacing is precisely estimated and we can know a fine structure of the hypernucleus.

Previous γ-ray spectroscopies: Hyperball project since 1998

The experiment is continuing at J-PARC

2. J-PARC E13 1st Phase

Gamma-ray Spectroscopy of ${}^{4}_{\Lambda}$ He

■ Charge symmetry breaking (CSB) in the AN Interaction

Gamma-ray Spectroscopy of $^{19}_{\Lambda}$ F

- It is the first γ-ray spectroscopy for sd-shell hypernuclei.
- Energy spacing of ground state doublet (1/2+, 3/2+)
- → Radial dependency of the AN spin-spin interaction?
- → //N spin-dependent interaction with different wave-function?

Experimental Setup of J-PARC E13

- Reaction: ${}^{A}Z(K^{-}, \pi^{-}){}^{A}_{\Lambda}Z$
- K1.8 Beamline : High intensity and high purity K^- beam
- \rightarrow Intensity of K^- beam: ~350 k/spill
- $\rightarrow K^-/\pi^- = \sim 2.5$
- \rightarrow 1.5 GeV/c for $^4_\Lambda {
 m He}$ and 1.8 GeV/c for $^{19}_\Lambda {
 m F}$
- SKS & K1.8 Beamline Spectrometers
- → High resolution of missing mass
- \rightarrow Large acceptance for (K^-, π^-)
- → good beam decay suppressor (SP0, SMF)

- Hyperball-J
- \rightarrow $^{A}Z(K^{-}, \pi^{-})^{A}_{\Lambda}Z^{*}, ^{A}_{\Lambda}Z^{*} \rightarrow \gamma + ^{A}_{\Lambda}Z$
- \rightarrow ~25 HPGe detectors ΔE ~4.5 keV @ 1MeV
- → PWO counters Fast background suppression

Mechanical cooling system Crystal temp. ~70 K

*a view of K1.8 experimental hall

@NPA, 835, 3 (2012)

3. Results of $^4_{\Lambda}{\rm He}$

Excitation Energy Distribution of $^4_{\Lambda}$ He

■ -2 MeV < Ex. < 6 MeV is selected to observe the γ rays from $(1^+ \rightarrow 0^+)$ transition.

@T.O. Yamamoto et. al., PRL 115, 222501 (2015)

Gamma-ray Spectra of ${}^4_{\Lambda}{\rm He}$

- We observed a γ ray at 1.406 MeV which emitted from $(1^+ \rightarrow 0^+)$ transition of $^4_{\Lambda}$ He.
- \rightarrow Compared with ${}^4_{\Lambda}\text{H}$ result (1.09 MeV), we found a large charge symmetric breaking effect in ΛN interaction.

4. Results of $^{19}_{\Lambda}$ F

$-B_{\Lambda}$ Distribution of ${}^{19}_{\Lambda}F$

■ -21 MeV<- B_{Λ} <-8 MeV is selected to observe the γ rays from low lying energy states.

γ-ray spectra

■ γ-ray spectra: energy range: 0~1800 keV and without Doppler shift correction.

■ At the forward reaction angle, we found two more gamma-ray peaks at 953 keV and 1267 keV.

Transition Assignments

■ Based on theoretical calculations, the gamma rays are assigned to their gamma transitions.

Spin-Spin Interaction in sd-shell Hypernuclei

Theoretical Calculation	Experiment	Shell-model with NSC97f model by Umeya	Shell-model with AN spin- dependent interaction at p- shell hypernuclei by Millener
$\Delta E(3/2^+, 1/2^+)$ [keV]	$315.5 \pm 0.4^{+0.3}_{-0.2}$	419	305

- \rightarrow The measured energy spacing is well represented by the spin-dependent interaction in p-shell hypernuclei. It also indicates the $\Delta\Sigma$ coupling effect is negligible for the energy spacing.
- → The results will be soon published in a major physics journal.

5. Next Plan (J-PARC E63)

J-PARC E63

- The J-PARC E63 (${}^{4}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ Li) is a next step of the J-PARC E13 1st phase.
- A new beam line (K1.1 beam line) will be constructed at J-PARC hadron facility.

 $^4_{\Lambda}$ H

→ Charge symmetric breacking

 $^{7}_{\Lambda}$ Li

From $M1(3/2^+ \rightarrow 1/2^+)$ transition.

 \rightarrow First B(M1) measurement

6. Summary

Summary

- The J-PARC E13 1st phase for ${}^{4}_{\Lambda}{\rm He}$ and ${}^{19}_{\Lambda}{\rm F}$ was successfully performed in May and June, 2015.
- $^4_{\Lambda}$ He: the energy spacing between 0⁺ and 1⁺ is determined to be 1.4 MeV.
- → a large charge symmetric breaking effect in the /IN Interaction.
- \blacksquare ${}^{19}_{\Lambda}\text{F}$: the energy spacing between the ground state doublet is determined to be 315 keV.
- \rightarrow It is well represented by the spin-dependent ΛN Interaction in p-shell hypernuclei.
- The experiment will be continued at the new constructed beam line (K1.1 beam line).
- \rightarrow The next targets are $^4_{\Lambda}$ H and $^7_{\Lambda}$ Li.

*Back Up

K1.8 Beamline

- K1.8 Beamline : High intensity and high purity K^- beam
- \rightarrow Intensity of K^- beam: ~350 k/spill
- $\rightarrow K^-/\pi^- = \sim 2.5$

	$^4_\Lambda { m H}$	$^{7}_{\Lambda}{ m Li}$	¹⁹ _Λ F
Four-body Cluster model		4He	160 p + 1
Wave- function	$s_N s_\Lambda$	$p_N s_\Lambda$	$(sd)_N s_\Lambda$
N, RMS radius [fm] @by Millener, pr	2.5~(0s) rivate communication	3.0 $(0p_{1/2})$ 2.9 $(0p_{3/2})$	$3.4 \ (1s_{1/2})$ $3.5 \ (0p_{1/2})$ $3.3 \ (0d_{5/2})$
Λ, RMS radius [fm] @by Millener, pi	3.5 (0s) ivate communication	2.6 (0 <i>s</i>)	2.3 (0 <i>s</i>)
ΔE_x (ground state doublet)	1.1 MeV	0.695 MeV $(\Delta_{p_N S_{\Lambda}} = 0.43 \text{ MeV})$?

■ Hypernucleus in the shell model, Ex) ground state of $^{19}_{\Lambda}$ F in the shell model,

