Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPH ### Takatsugu ISHIKAWA Research Center for Electron Photon Science (ELPH), Tohoku University 2016 JAEA/ASRC Reimei Workshop: New exotic hadron matter at J-PARC Inha University, Incheon, Korea, October 26, 2016. - 1. d*(2380) dibaryon resonance $\gamma d \rightarrow \pi^0 \pi^0 d$ reaction at E_{γ} ~0.57 GeV - 2. ηN scattering length $\gamma d \rightarrow p \eta n$ reaction at $E_{\gamma} \sim 0.93$ GeV - 3. Summary Sendai 1.3 GeV bremsstrahlung photon beam Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi # d*(2380) dibaryon resonance Abashian-Booth-Crowe (ABC) effect low-mass enhancement in $m_{\pi\pi}$ distribution first observation in 1960 isoscalar $\pi\pi$ -pair A. Abashian, N.E. Booth, K.M. Crowe, PRL 5 (1960) 258; N.E. Booth, A. Abashian, K.M. Crowe, PRL 7 (1961) 35. appearance of the $d^*(2380)$ dibaryon resonance $pn \rightarrow \pi^{o}\pi^{o}d$ reaction (only I=0) first indication by the CELCIUS/WASA collaboration M. Bashkanov et al., PRL102, 052301 (2009). observation by the WASA-at-COSY collabration P. Adlarson et al., PRL106, 242302 (2011). peak with a mass m=2.37 GeV and width $\Gamma=0.07$ GeV Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi # 0 # d*(2380) dibaryon resonance $pn \rightarrow \pi^{0}\pi^{0}d$ reaction (only I=0) isoscalar $\pi\pi$ -pair peak with a mass m=2.37 GeV and width $\Gamma=0.07$ GeV a six-quark state an isoscalar ΔΔ quasi-bound state, \mathcal{D}_{03} (predicted by Dyson and Xuong) F.J. Dyson and N.-H. Xuong, PRL13, 815 (1964). low-mass enhancement in $m_{\pi\pi}$ distribution Study of baryon resonances and meson-nuclusing photoproduction reactions at ELPHi *T. Ishikawa*, *October* 26, 2016. ### d*(2380) dibaryon resonance #### other reactions #### H. Clement et al., Phys. Scr. T 166, 014016 (2015). $$pn \rightarrow \pi^{+}\pi^{-}d$$ $\rightarrow \pi^{0}\pi^{-}pp$ $\rightarrow \pi^{0}\pi^{0}pn$ $\rightarrow \pi^{+}\pi^{-}pn$ $\rightarrow pn$ All the evidences were given in the pn collision Nearly all the observation was made by the WASA-at-COSY collaboration. Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi How about photoproduction? MIN2016 Kyoto # d*(2380) dibaryon resonance ### s-channel photoproduction $\gamma d \rightarrow \pi^+ \pi^- d$ and $\gamma d \rightarrow \pi^0 \pi^0 d$ advantageous to study the production mechanism - Gash at $W = 2.46 \text{ GeV/c}^2$: known gap in CLAS photon energy coverage - No obvious $\Delta\Delta$ visible in CALS/g13 (maybe PWA, or not formed in γ d) - Recall WASA@COSY claims $\Delta\Delta$ at W = 2.37 GeV/c² in $pn \rightarrow d \pi^+ \pi^-$ The Kroll-Ruderman contact term can give a larged effect in this channel. Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi T. Ishikawa, October 26, 2016. $\gamma d \rightarrow \pi^{o} \pi^{o} d$ can be the best! # Experimental setup Electron Beam after the earthquake LINAC 150 MeV→93 MeV Booster Ring 1200 MeV (max) Photon Beam →1300 MeV Bremsstrahlung Tagged ### 1.3 GeV Booster STorage Ring - T. Ishikawa et al., Nucl. Instr. Meth. A 622, 1 (2010); - T. Ishikawa et al., Nucl. Instr. Meth. A 811, 124 (2016). Bremsstrahlung Tagged Photon Beam 740~1150 MeV @ 1200 MeV ~20 MHz (photon: 10 MHz) 570~890 MeV @ 930 MeV Photon Beam ~2.8 MHz (photon: 1.2 MHz) δE: 1~2 MeV $W_{\gamma d}$ =2.38~2.61 GeV Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi Experimental setup Backward Gamma 252 Lead/SciFi modules SCISSORS III SPIDER 192 CsI crystals 3% @ 1 GeV **LOTUS** Rafflesia II Photon Beam 62 Lead Glasses 5% @ 1 GeV 7% @ 1 GeV Target: 45 mm thick LH2 & LD2 FOREST electro-magnetic calorimeter T. Ishikawa et al., Nucl. Instr. Meth. A 832, 108 (2016). Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi # Event selection for $\gamma d \rightarrow \pi^{o} \pi^{o} d$ - 1. 4 neutral particles and 1 charged particle - 2. each neutral pion: $\gamma \gamma$ decay time difference is less than $3\sigma_t$ btw every 2 neutral clusters of 4 4. sideband background subtraction to remove accidental coincidence effect btw STB-Tagger II and FOREST # Event selection for $\gamma d \rightarrow \pi^{o} \pi^{o} d$ Further event selection: a kinematic fit with 6 constraints is applied energy and momentum conservation (4) each $\gamma\gamma$ invariant mass is $m_{\pi\pi}$ (2) χ^2 probility is higher than 0.1 Only the deuteron locus is observed after the fit # Total cross section for $\gamma d \rightarrow \pi^{o} \pi^{o} d$ #### **Total cross section:** $$\sigma = rac{N_{\pi^0\pi^0d}}{N_{\gamma'}N_{ au}\eta_{ m acc}\left\{{ m BR}(\pi^0 o\gamma\gamma) ight\}^2}$$ N'_{γ} : effective number of incident photons number of tagging signals photon transmittance DAQ efficiency N_{τ} : number of target deterons in a unit area additional dependence from isotropic generation $$P = \left(\frac{m_{\pi\pi} - m_{\pi\pi}^{\min}}{m_{\pi\pi}^{\max} - m_{\pi\pi}^{\min}}\right)^n$$ with n=1.7 Study of baryon resonances and meson-r using photoproduction reactions at ELPI # Total cross section for $\gamma d \rightarrow \pi^{o} \pi^{o} d$ ### **Total cross section:** No clear resonance-like behavior at W=2.37 GeV. Upper limit of the cross section: 0.071 ub (90% CL) # Total cross section for $\gamma d \rightarrow \pi^{o} \pi^{o} d$ Total cross section: $N\Delta$ system is forbidden NN^* system cannot explain at low energies lowest-mass N^* is $P_{11}(1440): E_{\gamma} \sim 0.64$ GeV sequential π^0 emission $\gamma N \rightarrow \pi^0 \Delta \rightarrow \pi^0 \pi^0 N$? Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi # Summary for $\gamma d \rightarrow \pi^0 \pi^0 d$ Total cross section has been measured for $W_{\gamma d}$ =2.38~2.61 GeV for the first time No clear resonance-like behavior corresponding to d*(2380) is observed. Upper limit of the d*(2380) contribution is 0.071 ub (90% CL) at $W_{\gamma d}$ =2.37 GeV. The measured excitation function is rather flat and incosistent with the existing theoretical calculation for this reaction. A further understanding of the isoscalar part of $\pi^{o}\pi^{o}$ production is required. Please see arXiv:1610.05532 (T. Ishikawa et al.) # Interaction between mesons and nucleons fundamental & important **Neutral mesons:** not precisely determined (except for π^{o}) scattering experiments: impossible life time is very short no beam is available X-ray measurements: impossible no electro-magnetic attraction no mesic atom Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi T. Ishikawa, October 26, 2016. ηN low-energy scattering parameters combined theoretical analyses of differential and total cross sections for $\pi N \rightarrow \eta N$ transition, $\gamma N \rightarrow \eta N$ photoproduction together with $\pi N \rightarrow \pi N$ scattering, $\gamma N \rightarrow \pi N$ photoproduction obtained scattering length $a_{\eta N}$ - -Im $a_{\eta N}$: ~0.26 fm (optical theorem) - -Re $a_{\eta N}$: 0.2~1.1 fm Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi T. Ishikawa, October 26, 2016. scattering length $a\eta N$ indirectly determined real part is scattered a direct measurement of $a_{\eta N}$ is desired Q. Haider and L.C. Liu, J. Mod. Phys. E 24, 1530009 (2015). ### Proposed reaction to extract ηn scattering length # To be considered: contirbution of the $\eta n \rightarrow \eta n$ reaction recoil momentum of η for the $\gamma p \rightarrow p \eta$ reaction The η mesons are at rest when the incident photon energy is 932 MeV, and protons are detected at 0°. ### Proposed reaction to extract ηn scattering length The FSI between ηp and pn is expected to be suppressed. The Fermi motion should be taken into account though. Sensitivity to ηn scattering length dynamical coupled channel (DCC) model is applied to γd reactions S.X. Nakamura, H. Kamano et al., in private communication. ### to be checked: - 1. η exchange is dominant? - 2. pn FSI is suppressed? - 3. how is the sensitivity? - S.X. Nakamura, Extracting eta-neutron interaction from gamma d → eta n p data, Meson in Nucleus 2016, August 1, 2016. # Model for $\gamma d \rightarrow \eta np$ impulse πN , ηN rescattering ### NN rescattering $\gamma N \rightarrow \pi N$, $\gamma N \rightarrow \eta N$, $\pi N \rightarrow \eta N$ amplitudes (DCC model) NN FSI and deteron wave function (CD-Bonn potenial) #### off-shell effects Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi ηn relative momentum (MeV/c) $\eta n \rightarrow \eta n$ rescattering effect is visible at the small ηn relative momentum DCC model suggests: $a_{\eta n} = -0.7 - i0.3$ fm, $r_{\eta n} = -1.9 - i0.5$ fm $\pi n \rightarrow \eta n$ transition effect is small NN rescattering effect is small Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi T. Ishikawa, October 26, 2016. # Experimental setup Proton detection at oo bending magnet from the KEKB low energy ring plastic hodoscopes for the TOF measurement drift chambers for the momentum measurement aerogel Cherenkov counters for π/K separation SF5 lead glass Counters for e/π separation New experiments will start in the end of this fiscal year Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi Proton missing mass resolution: 3.8~ 6.1 MeV corresponding to ηn invariant mass resolution photon tagging: 0.5~2.5 MeV emitted proton measurement: uncertainty of the vertex z point of the STB ring 8 ps(σ) for 20 mm target thickness time resolution of PS hodoscopes 50~100 ps flight length ~5 m giving 4~8 MeV/c ηn relative momentum: 8~13 MeV/c for 3.8 MeV $m\eta n$ mass resolution 12~20 MeV/c for 6.1 MeV $m\eta n$ mass resolution performance of the new detector system is on-going. # Experimental setup Expected yield for a 90-day experiments at ELPH Study of baryon resonances and meson-nucleon interactions using photoproduction reactions at ELPHi 26 # Summary for ηN scattering length Low-energy ηn scattering parameters: fundamental & important little is known ELPH-2844 (T. Ishikawa et al.) γd→pηn experiment is proposed using the FOREST detector at ELPH to extract aηn E_{γ} =930 MeV and θ_p =0° is the ideal condition: minimum ηn relative momentum pn rescattering effect is small $\pi n \rightarrow \eta n$ transition effect is small Measurement of coherent $\pi^0\pi^0$ production on the deuteron to verify whether $d^*(2380)$ can be photoproduced or not no clear resonance-like behavior is observed upper limit is 0.071 ub at W=2.37 GeV (90% CL) excitation function is rather flat and inconsitent with the existing calculation w/o $d^*(2380)$ arXiv:1610.05532 (T. Ishikawa et al.) Measurement of $\gamma d \rightarrow p \eta n$ is planned incident energy ~ 930 MeV detecting protons at 0 degrees direct measurement of ηn scattering parameters ELPH-2844 (T. Ishikawa et al.)