

ATLAS Reprocessing

Xavier Espinal (PIC/IFAE)

Outline

- Reprocessing targets
- What robots want and what PanDA/DDM does
- Reprocessing jobs and data workflow
- Nprestage
- ATLAS reprocessing metrics
- Conclusions

Targets

- Considered running the whole spring reprocessing campaign
 - Too complex for operational issues (involving about 10k tasks)
 - Decided to do a single task per cloud (pseudo-reprocessing)
 - > Run RAW to ESD jobs on special jumbo datasets
 - → Using cosmics 2008 data
- Read RAW from tape (cache cleanup in advance). ESD_and_logs
 written to tape
 - Pseudo-repro: smaller output files but same amount
 - Metrics based on files/hour not throughput
 - No AOD/DPD production
- Exercise full tape recall machinery at the Tier-1s
- Exercise ATLAS reprocessing mechanisms, fully automated and based on:
 - PanDA: job workflow (defined-assigned-activated-running)
 - DDM: data workflow (Process assigned -> activated step using dataset pre-stage service)
 Xavier Espinal: ATLAS Reprocessing

Tier-1

What robots want?

- Good robot usage is mandatory for efficient reprocessing
- Robots like to:
 - Receive bulk petitions for recall
 - > Internal MSS reordering capability: minimize tape mounts and seeks
 - Ordered jobs:
 - > Data is stored on tapes, using file families. Bulk of consecutive jobs asking for consecutive data is optimal.
 - Data pre-placement mechanism
 - Recalls can be slow. Data should be on disk before the job starts
 - Prevent jobs to wait during staging
 - Avoid potential problems: low efficiencies, walltime/cputime failures, etc.

What PanDA/DDM does?

- Good robot usage is mandatory for efficient reprocessing
- Robots like to:
 - Receive bulk petitions for recall
 Job sent in chunks. Constant queue of recalls O(2k)
 - Ordered jobs:

Input data blocks of 20 files (20 jobs)

Data pre-placement mechanism

Special subscription (DDM) issued for recall.

Notice once file is on disk: DDM polling SE (srmLs)

Callback to change job state: job activated once file is on disk

 ATLAS reprocessing workflow is fully embedded in PanDA/DDM

Repro tasks injected in ProdDB

ProdDB

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server:
 - Ensure a good job keep-up
 - Pick-up jobs if:
 - > queued/running <2 or
 - queued<Nprestage (minimum number of recalls per site)
 - > This increase number of files to be requested at the sites and maintain it
 - Optimizing MSS efficiency (local reshuffling)

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA
- Trigger special DDM subscription from TAPE
 ST to same TAPE ST
 - Pre -staging mechanism is DDM (used for all sites except US -PanDA Mover-)

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA
- Trigger special DDM subscription from TAPE ST to same TAPE ST
- srm-bring-online issued (in bulks)

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA
- Trigger special DDM subscription from TAPE
 ST to same TAPE ST
- srm-bring-online issued (in bulks)
- Check when file is ONLINE (disk):
 - polling with bulk(50) srmLS

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA
- Trigger special DDM subscription from TAPE
 ST to same TAPE ST
- srm-bring-online issued (in bulks)
- Check when file is ONLINE (disk)
- Once files are on disk: change of job state in PanDA: from "assigned" to "activated"
 - "activated" means that jobs can be pulled by pilots

- ATLAS reprocessing workflow is fully embedded in PanDA/DDM
- Reprocessing coordinators insert the tasks
 (jobs collection) in the production DB
- The supervisor (Bamboo) pick up jobs from ProdDB and feed PanDA server
- Pre-stage: jobs tagged in "assigned" state in PanDA
- Trigger special DDM subscription from TAPE
 ST to same TAPE ST
- srm-bring-online issued (in bulks)
- Check when file is ONLINE (disk)
- Once files are on disk: change of job state in PanDA: from "assigned" to "activated"
- Wait for pilots to pull payload and job run

Nprestage

- Nprestage parameter helped a lot for optimization:
 - Keep constant number of assigned+activated jobs at each T1
 - Can be tuned per site
- $^{\rm -}$ This enhances the number of pre-stage requests delivered to the tape system and generally allows the tape system to better optimize recalls

Nprestage

STEP09 reprocessing metrics

- ATLAS metrics for reprocessing based on files/day not throughput
 - Pseduo-repro outputs slightly lower in size
- Baseline and enhanced metrics (for the 10 repro-STEP days):
 - Nominal rate: 200Hz (1.6MB/event: 320MB/s) and 50ks/day gives:
 - > 16TB/day of RAW data
 - STEP09: baseline metric: 400Hz (x2 nominal):
 - 10% T1: 40Hz (1.6MB/event) => process 3.2TB/day => 2000 files/day
 - ~40 MB/s net rate (20k files over STEP09)
 - ⇒ STEP09: enhanced metric: 1000Hz (x5 nominal):
 - 10% T1: 100Hz (1.6MB/event) => process 8/B/day => 5000 files/day
 - ~100 MB/s net rate (50k file over STEP09)
 - Above numbers account for the needed net rate between WNs and recall pools

STEP09 Results

TI	Base Target	Result	Comment
ASGC	10 000	4 782	Many batch system and basic setup problems
BNL + SLAC	50 000	99 276	
CNAF	10 000	29 997 ★	
FZK	20 000	17 954	Big tape system problems pre-STEP; no CMS
LYON	30 000	29 187	Very late start due to tape system upgrade, then good
NDGF	10 000	28 571 ★	
PIC	10 000	47 262 ★	
RAL	20 000	77 017 ★	
SARA	30 000	28 729	Tape system performance very patchy
TRIUMF	10 000	32 4 81 ★	

^{*} Taken from yesterday's Graeme's:

^{*} http://indico.cern.ch/getFile.py/access? contribId=0&sessionId=0&resId=0&materialId=slides&confId=56580

Conclusions

- Parallel tape usage together with CMS and some LHCb activity
 - Very useful for exercising multi-VO sites
- PanDA and DDM driven workflow worked fine
 - Sites do nothing special for repro, similar workflow as the MC production
 - Bulk submission allow MSS reordering (good for robot efficiencies)
 - PanDA assigned-activated game ensure data pre-placement before job run
- Running simulation and reprocessing together can be potentially dangerous
 - Can block job slots for too long. Consider to restrict simul while reprocessing.
- dCache sites do need to bring attention to the MSS configuration
 - Avoid queued recalls
 - Tape drives read pools balancing (MaxActive)
- STEP09 reprocessing was successful:
 - 5 out of 10 Tier-1s met enhanced metrics, 6 were validated (achieved baseline metrics)
 - 3 Tier-1s were above 90% of the target, one Tier-1 did 50%
- DDM team developing new pre-staging mechanism (file stager service)