

Julien Hamon

Université de Strasbourg Institut Pluridisciplinaire Hubert Curien

Rencontres QGP France 2016 October 10-13

- Introduction on D-meson and D_s physics
- Reconstruction of a new decay channel in ALICE: $D_s^+ \rightarrow K_S^0K^+$
- D_s cross-section in pp collisions at $\sqrt{s} = 7$ TeV
- Conclusion

Heavy-quark specificities

QGP phase

Kinetic freeze-out

Why are heavy quarks interesting?

Pre-equilibrium

Heavy quarks are interesting probes offering insights into the strong interaction

Charm ~ 1.3 GeV/ c^2 Beauty ~ 4.2 GeV/ c^2

a./ Produced in hard scattering processes: sensitive test of pQCD (large quark masses)

b./ Short formation time: heavy quarks are produced before the QGP formation $\Delta t_c < 1/(2m_c) \sim 0.1 \text{ fm/}c < \tau_{\text{QGP}} \sim 0.3 - 1 \text{ fm/}c$ at LHC

c./ Negligible annihilation rate: heavy quarks experience the whole collision history

d./ Interact with the medium constituents: via elastic (collisions) and/or inelastic (radiations) processes?

Chemical freeze-out

e./ Hadronize: via fragmentation and/or coalescence processes?

Heavy-flavour hadrons

Front door to access the medium properties affecting heavy quarks: **D**, **B**, J/Ψ , $\Psi(2S)$, Y(1S, 2S, 3S), Λ_c ...

Heavy quark interactions with the medium

Medium properties are accessible by understanding the *interactions* of heavy quarks with the medium constituents.

Heavy quark energy loss:

1./ Elastic processes (*collisional*): scatterings with other partons, *dominate at low* p_T ($p_Q < 10 m_Q$)

- 2./ Inelastic processes (*radiative*): gluon radiations, *dominate at high* p_T ($p_Q > 10 m_Q$)
 - Colour-charge dependence Baier, Dokshitzer, Mueller, Peigné, Schiff: Nucl. Phys. B483 (1997) 291-320 Casimir factor: $C_R = 3$ for gluons; 4/3 for quarks
 - Mass dependence: *dead-cone effect* Dokshitzer, Kharzeev: Phys. Lett. B519 (2001) 199-206
 Energy distribution of radiated gluons is suppressed by an angle-dependent factor

+ Other processes: in-medium hadron formation and dissociation Adil, Vitev: Phys. Lett. B649 (2007) 139-146

$$\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$$
 ? $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

The reduction of parton energy leads to a reduction of the average momentum of the produced parton, quantified by the *nuclear modification factor*:

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = \frac{1}{\langle T_{\mathrm{AA}} \rangle} \cdot \frac{\mathrm{d}N_{\mathrm{AA}}/\mathrm{d}p_{\mathrm{T}}}{\mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

D-meson suppression as a function of centrality

- Large suppression of D mesons (D+, D0, D++) in **Pb-Pb** collisions
- Stronger suppression for **central Pb-Pb collisions**, up to a factor of 5-6, than for **semi-central collisions**, up to a factor 3.

• No significant suppression in MB **p-Pb collisions** for $p_T > 2 \text{ GeV}/c$ Phys. Rev. Lett.113 (2014) 232301

Interpretation:

- suppression observed in Pb-Pb cannot be caused by Cold Nuclear Matter effects
- stronger energy loss in central collisions due to the increase of medium density, size and lifetime

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$
 ?

 $R_{AA}(\mathbf{D}) < R_{AA}(\mathbf{J/\Psi} \leftarrow \mathbf{B})$ as expected since $\Delta E(\mathbf{c}) > \Delta E(\mathbf{b})$

- Data in qualitative agreement with *Djordjevic* model, which contains:
 - Mass-dependent energy loss for gluons, light and heavy quarks: radiative & collisional
 - Hadronization by fragmentation outside the medium

D_s meson: a probe for hadronization

Hadronization:

- 1./ Fragmentation: in the vacuum, dominates at high p_T
- 2./ Recombination: for quarks close in the phase space, may dominate at low p_T

If charm quarks recombine in the QGP, the relative fraction of strange vs. non-strange D mesons might increase at low p_T

TAMU expects enhancement of the D_s/D in heavy-ion collisions

Expanding medium Collisional *energy loss* Fragmentation (3+1d ideal hydrodynamic) (HQ transport + scattering in hadronic phase) Recombination

- D_s points seem systematically above the non-strange D-meson ones, but measurements are compatible within uncertainties
- No firm conclusion with this first measurement in Pb-Pb collisions

Need more precise measurements of Ds mesons

- Introduction on D-meson and D_s physics
- Reconstruction of a new decay channel in ALICE: $D_s^+ \rightarrow K_S^0 K^+$
- D_s cross-section in pp collisions at $\sqrt{s} = 7$ TeV
- Conclusion

D_s alternative decay channel

D_{s}^{+} (1968.3 MeV/ c^{2})	$\varphi(\text{1020})\pi^{\scriptscriptstyle +}$	(2.24 ± 0.10 %)	✓ Usual channel
	$K_S^0K^{\scriptscriptstyle +}$	(1.49 ± 0.06 %)	✔ Alternative

Cons:

- 33.5% lower branching ratio
- ★ Lower resolution on the reconstructed mass of D_s candidates

Pros:

- High reconstruction efficiency for K_S^0 than for ϕ (especially at high- p_T)
- ✓ No need of detector PID to identify K_S⁰
- Two decay channels allow to better control the systematics

Combinatorial background reduction performed by exploiting the D_s^+ displacement ($c\tau \sim 150 \mu m$) and applying topological selections

Typical topological selections have to be optimised per p_T -bin

- D-meson decay length: L_{xy}
- D-meson pointing angle: $cos(\theta_{pointing})$
- Impact parameter of daughters: d_0

D-meson studies with ALICE

A Large Ion Collider Experiment: designed for the QCD study

Optimised to work in high-track density environment, reach low p_T (~100 MeV/c) measurements with good PID capabilities

Open-charm hadrons studied in ALICE:

- Decay electrons: D, Λ_c^+ , B \rightarrow e + X in $|\eta|$ < 0.9
- Decay muons: D, Λ_c^+ , B $\rightarrow \mu + X$ in $-4 < \eta < -2.5$
- Hadronic (π^{\pm}, K^{\pm}) channels in $|\eta| < 0.9$

Hadronic *full* reconstruction of D mesons: invariant mass analysis in $|\eta| < 0.9$

Julien.Hamon@cern.ch

- Introduction on D-meson and D_s physics
- Reconstruction of a new decay channel in ALICE: $D_s^+ \rightarrow K_S^0K^+$
- D_s cross-section in pp collisions at $\sqrt{s} = 7$ TeV
- Conclusion

First attempt on LHC Run I data

Objective: explore the possibilities offered by the $D_s^+ \rightarrow K_S^0 K^+$ channel

- prepare the analysis framework for the pp collisions at 13 TeV
- compare the published Ds measurements (usual channel) with the new KS channel

Inclusive D_s cross section: in 390M minimum-bias proton-proton collisions at $\sqrt{s} = 7$ TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5}^{\mathrm{inclusive}} = \frac{1}{2 \cdot \mathrm{BR} \cdot L_{\mathrm{int}}} \frac{N^{\mathrm{D_{s}^{\pm} \ raw}}|_{|y|< y_{\mathrm{fid}}}}{\Delta y \cdot \Delta p_{\mathrm{T}} \cdot (\mathrm{Acc} \times \epsilon)_{\mathrm{inclusive}}}$$

$$\underline{3.}$$

- **1.** Extract the number of D_s^{\pm} per p_T bin, in a given y-range
- 2. Correct the bias due to the experimental setup and reconstruction method
- <u>3.</u> Known from previous studies

First attempt without systematics

Particle identification: to identify the bachelor particle as a K⁺

- combined use of TPC and TOF
- rather loose PID (TPC: 3σ from the expected value / TOF: within 2σ)

Topological selections: optimised by hand, per p_T bin. They can be further improved with the help of Monte Carlo.

Selection variables	Cut values	
$ M(V0)$ - $M_{PDG}(K^0_{S}) $	< 3 σ	
$d_{0}\left(\pi^{\pm} ight)$	> 700 μm	
$DCA(\pi^+, \pi^-)$	< 1 σ	
$c au(K^0_S)$	< 5	
$r_{XY}(V0)$	> 0.5 cm	
$p_{T}(K^{\scriptscriptstyle{+}})$	> 1.7 GeV/ <i>c</i>	
$\cos(heta_{pointing})$	> 0.75	
$ \cos(heta^*) $	< 0.78	
$DCA(K_S^0, K^+)$	< 0.5 cm	
Decay length	> 300 μm	

Signal (N^{raw}) extracted by **fitting**

Work in progress

A clear $D_s^+ \rightarrow K_S^0 K^+$ signal is observed

And then do the same for other p_T bins...

Work in progress

Work in progress

Work in progress

Work in progress

A clear $D_s^+ \rightarrow K_S^0 K^+$ signal is observed

Extract the D_s raw yield

The combinatorial background is not fully reproduced by the background (exponential) function.

- Two similar decays can **contaminate** the signal region: $D^+ \to K_S^0 \pi^+$, $\Lambda_c^+ \to K_S^0 p$
- No protection has been applied to prevent this contamination so far, except (loose) PID

With the current loose PID, the K^{\pm} candidates are contaminated by π^{\pm} , thus $D_s^+ \longrightarrow K_S^0 K^+$ candidates are contaminated by $D^+ \longrightarrow K_S^0 \pi^+$

The combinatorial background is not fully reproduced by the background (exponential) function.

- Two similar decays can **contaminate** the signal region: $D^+ \rightarrow K_S^0 \pi^+$, $\Lambda_c^+ \rightarrow K_S^0 p$
- No protection has been applied to prevent this contamination so far, except (loose) PID
- Contamination **estimated** with the help of Monte Carlo simulations $N^{\text{raw}} = (1 c^{\text{contamination}, MC}) \times N^{\text{raw, measured}}$

Work in progress

Work in progress

A data-driven approach to limit (as drastically as possible) the D⁺ contamination in the signal region is being investigated...

2. Acceptance and efficiency corrections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5}^{\mathrm{inclusive}} = \frac{1}{2 \cdot \mathrm{BR} \cdot L_{\mathrm{int}}} \frac{N^{\mathrm{D_{s}^{\pm} \ raw}}|_{|y|< y_{\mathrm{fid}}}}{\Delta y \cdot \Delta p_{\mathrm{T}} \cdot (\mathrm{Acc} \times \epsilon)_{\mathrm{inclusive}}} \frac{1}{2 \cdot \mathrm{BR} \cdot L_{\mathrm{int}}} \frac{2}{2 \cdot \mathrm{BR} \cdot L_{\mathrm{int}}} \frac{1}{2 \cdot \mathrm{Acc} \times \epsilon}$$

Acceptance × **Efficiency**: have to be estimated to account for

- the limited acceptance of the detector
- the reconstruction efficiency of D_s mesons: tracks, vertex and selection cuts

ALI-PUB-40184

• Roughly similar (Acceptance × Efficiency) for prompt-D_s for the first 3 p_T bins

Comparison of D_s cross sections

D_s cross-section comparison: $D_s^+ \rightarrow \phi(1020)\pi^+ \text{ vs. } D_s^+ \rightarrow K_S^0K^+$

- Measurements in agreement within uncertainties
- Similar relative uncertainties, except for the last p_T bin

Work in progress

Work in progress

Combined measurements: $D_s^+ \to \phi(1020)\pi^+$ and $D_s^+ \to K_S^0K^+$ have been merged, using their statistical uncertainties as weights

- All 3 measurements are in agreement within uncertainties
- Relative uncertainties significantly reduced for the first three p_T bins

$$\bar{\mu}_{\mathrm{merged}} = \sum_{i} \frac{x_{\mathrm{mean},i}}{\sigma_{\mathrm{stat.},i}^2} / \sum_{i} \frac{1}{\sigma_{\mathrm{stat.},i}^2}$$

pT (GeV/c)2 - 44 - 66 - 88 - 12Statistical uncertainty reductionsWork in progress

- Introduction on D-meson and D_s physics
- Reconstruction of a new decay channel in ALICE: $D_s^+ \rightarrow K_S^0K^+$
- D_s cross-section in pp collisions at $\sqrt{s} = 7$ TeV
- Conclusion

Conclusion and prospects

D_s meson as a probe for hadronization

- Recombination at low p_T : relative enhancement of D_s with respect to non-strange D-mesons (e.g. TAMU models)
- First ALICE measurements: do not allow a firm conclusion with the current statistics

New decay channel for D_s studies:

- $D_s^+ \rightarrow K_S^0 K^+$: analysis framework has been implemented, based on LHC Run I data
- Comparison of cross-sections in pp collisions at $\sqrt{s} = 7$ TeV:

Similar results are obtained with the usual $(\phi(1020)\pi^+)$ and the new decay channels $(K_S^0K^+)$ Merging both results allows to reduce the relative statistical uncertainties up to ~30%

Prospects:

• Run II data:

proton-proton collisions at \sqrt{s} = 13 TeV will be available soon... and $D_s^+ \to K_S^0 K^+$ analysis will follow! Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV available since 5 days... and $D_s^+ \to K_S^0 K^+$ analysis may follow.

• Improvement of the current analysis:

Topological cuts and PID can be further improved, with the help of Monte Carlo simulations Methods preventing the $D^+ \to K^0_S \pi^+$ contamination will be tested Systematic uncertainties have to be evaluated