Φ meson production in pp collisions at $\sqrt{s}=13~{\rm TeV}$ in ALICE

Boris Teyssier

ALICE @ IPNL

October 11, 2016

- ${f 2}$ Ongoing analysis at $13~{
 m TeV}$
- Summary

Low-Mass dilepton physics

Low mass dilepton production in AA collisions \rightarrow information on the hot and dense state of strongly-interacting matter produced in high energy nucleus nucleus collisions

- Strangeness production via the ϕ meson
- Modification of ρ spectral function linked to the chiral symmetry restoration

Dileptons (dielectrons, dimuons)

 \rightarrow negligible final-state effects

Measurements in pp and p-A collisions: Soft particle production in Cold Nuclear Matter, needed reference for correctly interpreting heavy-ion observations.

Two dilepton channels in ALICE

- e^+e^- in mid rapidity : |y| < 0.9 in the central barrel
- μ⁺μ⁻ in forward rapidity :
 -4.0 < y < -2.5 in the muon arm. channel of interest for this talk</p>

Collision systems:

Pb-Pb: $\sqrt{s_{NN}} = 2.76 - 5.02 \text{ TeV}$

 $p-Pb: \sqrt{s_{NN}} = 5.02 \text{ TeV}$

pp: $\sqrt{s} = 2.76 - 5.02 - 7 - 8 - 13$ TeV

pp collisions - $\sqrt{s} = 13 \text{ TeV}$

Data set

• Data : LHC15[ijl] periods. Single μ thr. $\approx 1~{\rm GeV/c}$ LHC16[ghijklmn] periods. Single μ thr. $\approx 0.5~{\rm GeV/c}$

- Single Muon selection (in addition to $|Z_{\text{vtx}}| < 10 \text{ cm}$):
 - Trigger matching Level : 2
 - sharp low p_T cut [ijl] period : 0.75 GeV/c sharp low p_T cut [ghijklmn] period : 0.25 GeV/c
 - Eta cut : $-4 < \eta < -2.5$

statistical uncertainties only, no systematics yet

Data set

$$\sqrt{s}=13~{\rm TeV}$$
 : Raw mass spectrum

Combinatorial background estimation

Two ways to estimate the opposite sign combinatorial background

Background estimation from data themselves

$$N_{bkg}^{dir}(M) = 2R(M)\sqrt{N_{++}^{dir}(M)\cdot N_{--}^{dir}(M)}$$

with R factor estimated with mixing

$$R(M) = \frac{N_{+-}^{\text{mix}}(M)}{2\sqrt{N_{++}^{\text{mix}}(M) \cdot N_{--}^{\text{mix}}(M)}}$$

Event Mixing

Combinatorial background estimation

Background estimation from data :

- normalization automatically fixed by the data
- statistics limited by the data

Background estimation with mixing :

- no normalization
- no statistical limits

We combine the strengths of the two methods by taking the shape from the event mixing and imposing the **data-driven**

normalization

→ Residual differences between the bkg shape from the two methods are propagated in the analysis as a source of systematics : independent signal extractions and analyses for the "reference" and "alternative" bkg.

Signal

Very preliminary results

Preliminary estimation of dN/dp_T and dN/dy for ϕ meson

 Estimate the shape of p_T and rapidity dependence of phi production

Very preliminary results

Fit for LHC15ijl p_T and rapidity integrated

Very preliminary results

Threshold impact on low masses

 dN_{Φ}/dp_{T}

dN_{Φ}/dp_{T}

$$N \cdot rac{p_{\mathrm{T}}}{\left(1+\left(rac{p_{\mathrm{T}}}{p_{\mathrm{0}}}
ight)^{2}
ight)^{n}}$$

- filled green square for LHC16ghijklmn period
- filled blue circle for LHC15ijl period

Summary

- ALICE collected a large sample of dimuon-triggered events in 2015 and 2016
 - ullet Two single-muon thresholds available: 0.5 and $1~{\rm GeV/c}$
 - p_T measurements available for the first time down to almost zero pt for the phi meson thanks to the very large statistics and the low backround conditions of pp collisions

Backup

