Charmonia in pp and PbPb collisions at 5.02 TeV in CMS

Andre Ståhl

Laboratoire Leprince-Ringuet, École Polytechnique, Palaiseau

Rencontres QGP-France 2016 Étretat, France October 10-12, 2016

Motivation: Suppression

- Charmonia are produced in the early stage of the collision.
- Charmonium is expected to be suppressed in the QGP due to color screening (Matsui, 1986)

The binding energy decreases for higher excited states →
 Sequential Melting

Motivation: Regeneration

 The charm-anticharm pair multiplicity increases with energy (large at LHC), which raises the recombination of charmonia at hadronization

Source: arXiv:1208.5601

Less suppression at LHC than at RHIC at low p_{T} !

$$R_{AA} = rac{1}{\langle N_{coll}
angle} rac{dN_{(PbPb)}}{dN_{(pp)}}$$

ALI-PREL-16111

Motivation: Run 1 Results

CMS: $\psi(2S)$ was more suppressed than J/ ψ at midrapidity and high $p_{_T}$, but less at forward and medium $p_{_T}$

ALICE: Different message but statistically compatible

CMS Detector: Muons

- Muon Reconstruction: silicon tracker + muon sub-detectors
- Muon Kinematic Coverage:
 - $p_{T}>3.5$ GeV at $|\eta|<1.6$ and $p_{T}>1.8$ GeV at $1.6<|\eta|<2.4$
- "Global Muon": Global fit between a track in the tracker and the muon chambers

Event Selection

- **Decay Channels:** $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ and $J/\psi \rightarrow \mu^{+}\mu^{-}$
- Muon Selection:
 - Used muon ID cuts to reject fake muons and background events.
 - Applied muon kinematic cuts based on detector coverage

$$\begin{array}{ll} \textit{p}_{\mathsf{T}}^{\mu} > 3.5 \, \mathsf{GeV/}c & |\eta^{\mu}| \in [0, 1.2[\\ \textit{p}_{\mathsf{T}}^{\mu} > (5.77 - 1.89 \times |\eta^{\mu}|) \, \mathsf{GeV/}c & |\eta^{\mu}| \in [1.2, 2.1[\\ \textit{p}_{\mathsf{T}}^{\mu} > 1.8 \, \mathsf{GeV/}c & |\eta^{\mu}| \in [2.1, 2.4[\\ \end{array}$$

- Quarkonium Selection:
 - Global muon pairs with opposite charge and common vertex

Prompt J/ψ

• Directly produced: $g + g \rightarrow J/\psi + g$

Feed-down from higher charmonium states

Non-Prompt J/ψ

Charmonia coming from B-hadrons decays

Suppressed by cutting over the pseudo-proper decay length

$$\ell_{\text{J/}\psi}^{3D} = L_{xyz} \cdot rac{m_{\text{J/}\psi}}{p_{\mu\mu}} \quad ext{with} \quad L_{xyz} = rac{\hat{u}^T S^{-1} ec{r}}{\hat{u}^T S^{-1} \hat{u}} \quad ext{where } \hat{u} = ec{p}/p ext{ and } S ext{ is the sum of the primary and secondary vertex covariance matrices.}$$

• Tune $\ell_{J/\psi}^{3D}$ cut on MC so that the efficiency of keeping prompt J/ ψ is 90%.

Signal Extraction

- The J/ψ and ψ(2S) yields are extracted simultaneously by performing an unbinned maximum likelihood fit to the $\mu^+\mu^-$ invariant mass spectrum within the mass interval [2.2, 4.2] GeV/c²
- Nominal Signal Model: Sum of 2 Crystal Ball functions per peak.

$$g_{\text{CB}}(m;\alpha,n,\bar{m},\sigma) = N \cdot \begin{cases} \exp(-\frac{(m-\bar{m})^2}{2\sigma^2}), & \text{for } \frac{m-\bar{m}}{\sigma} > -\alpha \\ A \cdot (B - \frac{m-\bar{m}}{\sigma})^{-n}, & \text{for } \frac{m-\bar{m}}{\sigma} \leqslant -\alpha \end{cases} = 0.03$$

Nominal Background Model: Sum of Chebychev polynomials

The best Chebychev order for each bin is determined from data, using a Log-Likelihood Ratio (LLR) test which picks the lowest order describing correctly the data!

Mass Fits in PbPb

PbPb, |y| < 1.6, $9.0 < p_T < 12.0 \,\text{GeV}/c$

Jpsi: 49554 in PbPb and 6988 in pp

PbPb, 1.6 < |y| < 2.4, $3 < p_T < 30 \text{ GeV}/c$

Jpsi: 18382 in PbPb and 153499 in pp

Correction for B-hadron contamination

- A: **prompt** ψ **passing** the $\ell_{\text{J}/\!\psi}^{\text{3D}}$ cut
- B: non-prompt ψ passing the $\ell_{{\rm J}/\!\psi}^{{\rm 3}D}$ cut
- C: prompt ψ failing the $\ell_{{\rm J}/\!\psi}^{3D}$ cut
- D: non-prompt ψ failing the $\ell_{{\rm J}/\!\psi}^{{\rm 3}D}$ cut

- ullet Even after the $\ell_{{\rm J}/\psi}^{3D}$ cuts, a non-prompt contamination is left in our sample
- Accounted for by using a sideband in $\ell_{J/\psi}^{3D}$ (reverted the $\ell_{J/\psi}^{3D}$ cut)

• Passing fraction:
$$\mathbf{f}_{pass} = \frac{N_{pass}}{N_{pass} + N_{fail}} = \frac{N_{pass}}{N_{tot}} = \frac{A + B}{A + B + C + D}$$

• Prompt fraction:
$$\mathbf{f_P} = \frac{\mathbf{f_{pass}} - \epsilon_{NP}}{\epsilon_P - \epsilon_{NP}} = \frac{N_P}{N_{tot}} = \frac{A + C}{A + B + C + D}$$

 f_{pass} measured in data, ϵ_P and ϵ_{NP} estimated from MC

Correction for B-hadron contamination: Cross-check

J/ψ ψ(2S)

CMS: JHEP02(2012)011 CMS: JHEP02(2012)011

Good agreement between NP fractions using different methods!

Systematic Uncertainties

Systematic uncertainty on Fitting Procedure

Determined by using different signal and background models for pp and PbPb, changing fit parameters, and varying the fitting range

pp: 0.001 - 0.015 and PbPb: 0.08-0.1

Systematic uncertainty on Cancellation of Efficiencies

Three main sources: Statistical uncertainty of MC, deviation from unity of the double ratio of efficiencies, and spread of the double ratio of efficiencies when varying the MC p_T spectra allowed by the data

Eff: 0.012 - 0.096

Systematic uncertainty on B-hadron contamination

Determined from the **difference in B fractions** between 2D mass-lifetime fits and the $\ell_{\text{J/}\!/\!\!/}^{\text{3D}}$ sideband method

NP substraction: 0.006 - 0.09

Systematic Uncertainties

Statistical uncertainties largely dominate!

ψ double ratio @ 5.02 TeV: p₋ dependence

- ★ Double ratio < 1 in all bins: ψ(2S) more suppressed than J/ψ
 95% C.L. upper limits when no significant ψ(2S) in PbPb
 </p>
- ★ No significant p₊ dependence

ψ double ratio @ 5.02 TeV: Model comparison

X. Du and R. Rapp: $\psi(2S)$ regenerated later than J/ ψ in the fireball evolution

Nucl. Phys. A 943, 147, 1609.04868

ψ double ratio @ 5.02 TeV: centrality dependence

- ★ No strong N part dependence at 5.02 TeV
- Good agreement with 2.76 TeV for most bins
- \clubsuit Some difference (\sim 3 s.d.) only for central events at forward rap.

ψ double ratio @ 5.02 TeV: model comparison

- No strong N part dependence at 5.02 TeV
- Good agreement with 2.76 TeV for most bins
- \blacktriangleright Some difference (\sim 3 s.d.) only for central events at forward rap.

Summary

CMS-PAS-HIN-16-004

- $\psi(2S)$ more suppressed than J/ ψ in all bins @ 5.02 TeV
- Good agreement between 5.02 TeV and 2.76 TeV in most bins except in central events at forward rap (\sim 3 s.d.).

J/ψ R_{AA} @ 5.02 TeV results coming early 2017!

BACKUP