Bottomonium production in p+p and Pb+Pb collisions with CMS

Abdulla Abdulsalam

Laboratoire Leprince-Ringuet, École polytechnique, Palaiseau

Rencontre QGP France, Étretat Oct 10-12, 2016

Quarkonia as probes of QGP

- Quarkonia (χ_c , $\psi(1, 2S)$ and χ_b , $\Upsilon(1, 2, 3S)$): Massive states
 - → Produced at the early stage of the collision

State	J/ψ	Υ(1S)	Υ(2S)	Υ(3S)
Mass (GeV)	3.1	9.46	10.02	10.36
ΔE (GeV)	0.64	1.10	0.54	0.20
Radius r _o (fm)	0.50	0.28	0.56	0.78

- Sequential melting: via Debye screening in QGP
 - → Screening at different T for different states

 Matsui and Satz PLB 178 416 (1986), Digal PRD 64 0940150 (2001)
 - \rightarrow More weakly-bound states are expected to disappear at T_c ~ 150-190 MeV.
- Regeneration of quarkonia:
 - → From uncorrelated quarks and anti-quarks produced in bulk at LHC
 - **•** Expected to be small for Υ states as compared to J/ψ .

R. L. Thews Phys. Rev. C63, 054905 (2001), Andronic PLB 652(2007) 259

Bottomonia in QGP

- Sequential suppression of quarkonium states.
- Bottomonia are most tightly bound states => less suppressed in QGP
- Measure the states in most central and peripheral collisions to see the medium effect
- Measurement with 2011 and 2015 PbPb data

Observables

1) Nuclear modification factor R_{AA}

2) Double ratio

$$\mathcal{DR}_{21} \equiv \frac{(\Upsilon(2S)/\Upsilon(1S))_{PbPb}}{(\Upsilon(2S)/\Upsilon(1S))_{pp}}$$

Many theoretical and experimental quantities/uncertainties cancel in this ratio

LHC Runs of Heavy Ion Interest

 Υ measurement with Pb+Pb at 2011

$\overline{\mathbf{R}_{_{\mathbf{A}\mathbf{A}}}}$ at 2.76 TeV

- $\Upsilon(1S)$ shows gradual centrality dependence
- $\Upsilon(2S)$ largely suppressed at all centralities
- Both R_{AA} are flat over |y| < 2.4 and pT < 20 GeV/c
- $\Upsilon(3S)$ not observed $R_{AA}(3S) < 0.14$ at 95% confidence level

Sequence of suppression: $R_{AA}^{\Upsilon(3S)} < R_{AA}^{\Upsilon(2S)} < R_{AA}^{\Upsilon(1S)}$

R_{AA}: Comparison with models

Kinetic Theory Model

- Strong and weak-binding scenarios
- $\Upsilon(1S)$ not affected by color screening at LHC
- Significant regeneration contributions

Hydrodynamics model

- Thermal parameters are constrained by data
- Good agreement with CMS data
- Data preferring small shear viscosities in the range $1 < 4\pi\eta/s < 2$

R_{AA}: Comparison with models

Hydrodynamics model

- As a function of rapidity and pT, model reproducing the trends seen in the data
- As a function of pT, bottomonia spectra are unaffected due to the lack of thermalization
- Preferring low shear viscosity to entropy density ratio => QGP created in HIC behaves like a nearly perfect fluids?

 Υ measurement with Pb+Pb at 2015

Double ratio from 2.76 TeV PbPb

- At 2.76TeV, $\Upsilon(2S)$ is more suppressed than $\Upsilon(1S)$ at all centralities
- Is there any centrality dependence?
- Is new data at 5.02 TeV can give the answer?

5.02 TeV Data from 2015 Run

- PbPb and pp data collected in Nov, Dec 2015 @5.02 TeV
- Double muon trigger implemented at L1 (hardware based algorithm)
- pp luminosity $\sim 25.8 \text{ pb}^{-1}$
- PbPb have two datasets
 - $-351 \mu b^{-1}$ for 0-30% interval
 - $464 \mu b^{-1}$ for other intervals
- ~3 times more upsilons collected than from 2.76TeV

Inv Mass from 5.02 TeV

Signal: double Crystal-Ball function

Bkg: an error function multiplied by an exponential function

 $\rightarrow \Upsilon(1S)$ in pp collisions (red dashed line) normalized to PbPb $\Upsilon(1S)$

→ Y(3S) in PbPb consistent with zero!

Υ(2S) double ratio with Pb+Pb

- DR is the ratio of R_{AA} of (2S) and (1S)
- In 0-5% bin, $\Upsilon(2S)$ signal is consistent to zero < 0.36 at 95% CL
- DR is compatible with unity in the most peripheral bins (70-100%),
- Theory curves use hydrodynamics and lattice-based potential
 - → Obtained from the ratio of R_{AA} predictions of $\Upsilon(1S)$ and $\Upsilon(2S)$
- What about $\Upsilon(3S)$?

$$\frac{\mathbf{Y}(2S) R_{AA}}{\mathbf{Y}(1S) R_{AA}}$$
 is 0.308 \pm 0.055(stat) \pm 0.017(syst)

$\Upsilon(3S)$ double ratio vs centrality

- The $\Upsilon(3S)$ double ratio is lower than unity in all centrality bins
 - no indication that the suppression is weaker in the most peripheral events
- $DR_{31} < 0.26$ at 95% CL
- Arrows are 95% CL and boxes are 68% CL

Double ratio of $\Upsilon(2S)$ in p_{T} and y bins

- DR has no clear dependence on pT or rapidity
- Similarly to 2.76TeV result

Summary (1/2)

- $\Upsilon(2S)$ largely suppressed at all centralities
- Sequential suppression of bottomonium states

$$R_{AA}(Y(1S)) = 0.425 \pm 0.029 \pm 0.070,$$

$$R_{AA}(Y(2S)) = 0.116 \pm 0.028 \pm 0.022,$$

$$R_{AA}(Y(3S)) < 0.14 \text{ at } 95\% \text{ CL},$$

Summary (2/2)

- Υ(2S) strongly suppressed from mid-central collisions
- $\Upsilon(2S)$ is less suppresses in the peripheral collisions?
- Υ(3S) is completely dissolved?

Thank You

Differential cross section in pp

$$\mathcal{B}_{\mu\mu} \cdot \sigma_{Y(1S)}^{pp} = 0.738 \pm 0.013 \pm 0.036 \pm 0.028 \text{ nb}$$
 $\mathcal{B}_{\mu\mu} \cdot \sigma_{Y(2S)}^{pp} = 0.215 \pm 0.009 \pm 0.009 \pm 0.008 \text{ nb}$
 $\mathcal{B}_{\mu\mu} \cdot \sigma_{Y(3S)}^{pp} = 0.091 \pm 6.10^{-3} \pm 5.10^{-3} \pm 3.10^{-3} \text{ nb}$

Differential cross section in PbPb

Efficiency and Acceptance of Y(1S) in pp

Figure 28: Efficiency (Left) and Acceptance (Right) as a function of p_T (Upper) and Rapidity (Lower) for pp Y(1S) with loose p_T cuts.

Efficiency and Acceptance of Y(1S) in PbPb

Figure 31: Efficiency as a function of p_T , Rapidity and Centrality for Pb+Pb Y(1S) with loose p_T cuts.

Figure 32: Acceptance as a function of p_T , Rapidity and Centrality for Pb+Pb Y(1S) with loose p_T cuts.