Rencontres 29P France 2016

Overview of charmonium production in p-Pb and Pb-Pb collisions

Javier MARTIN BLANCO

Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau Etretat, October 11th 2016

CHARMONIA IN HEAVY-ION COLLISIONS

The presence of QGP affects quarkonia production (yield and kinematics)

HOT MATTER EFFECTS

→ Open beauty is a key to understand dynamics of parton-QGP interactions

Quarkonium regeneration:

- Statistical Hadronization models: Deconfinement and thermalization of the bulk of the $c\bar{c}$ pairs. Statistical hadronization of charm quarks at the phase boundary.

- **Transport models:** Dynamical competition between suppression in the QGP and regeneration mechanism.

COLD NUCLEAR MATTER EFFECTS

Cold nuclear matter effects:

- Initial state effects: Gluon shadowing (or saturation)
 - Shadowing: gluon pdf in a nucleus ≠ in a nucleon (saturation: when energy is high enough, gluons start to recombine with each other)
 Expected to be significant at LHC energies

Coherent energy loss

- The medium-induced gluon radiation modifies the initial-state gluon kinematics and affects the final-state $c\bar{c}$ pair

• Final state effects: Nuclear absorption

- Destruction of pre-resonant or final state ψ by collisions with nucleons Should be negligible at the LHC since nuclei crossing-times are smaller than $c\bar{c}$ formation times

Cold nuclear matter effects also modify the charmonia production pattern and kinematics

MAIN OBSERVABLES

To disentangle nuclear effects (hot/cold) we study **pp**, **p-Pb** and **Pb-Pb** collisions

Nuclear effects quantified with the nuclear modification factor:

$$R_{AA} = \frac{dN_{J/\psi}^{AA}/dp_T dy}{\langle N_{coll}^{AA} \rangle dN_{J/\psi}^{AA}/dp_T dy}$$

- I if no nuclear effects
 I if production enhancement
 I if production suppression
- **Elliptic flow** (\mathcal{U}_2) : Azimuthal anisotropy with respect to the reaction plane

Non-zero U_2 can be interpreted as an effect of collective expansion and/or path-length dependent E. loss.

Disclaimer: This presentation shows a biased summary of charmonia results

RESULTS IN p-Pb: RAPIDITY

- Increasing suppression from backward to forward rapidity at RHIC and LHC
- nPDF models overestimate RHIC data
- Coh. E.loss describes trend at RHIC and LHC
- Saturation model only describes RHIC and LHC data for certain rapidities

Experimental and nPDF uncertainties avoid further conclusions

RESULTS IN p-Pb: p_T

- $R_{FB} < I$ at low p_T and increases with p_T
- nPDF model does not describe data at low p_T

Hint for other effects **beyond nPDFs**?

RESULTS IN p-Pb: p_T

Data shows $\psi(2S)$ more suppressed than J/ψ

nPDF and E.loss w/wo nPDF predict same suppression for J/ ψ and ψ (2S).

Something else **beyond nPDFs and E.loss**. $\Psi(2S)$ dissociation by comovers?

RESULTS IN p-Pb: EVENT ACTIVITY

JHEP 1511 (2015) 127 1. 1. 1. 1. 1. ALICE, p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ ψ 46<y cms<-2.96, Pb-going direction -1.37<y_{cms}<0.43, p-going direction 2.03<y_{cms}<3.53, p-going direction 1.2 0.8 Eloss (Arleo et al.) CEM + EPS09 NLO (Vogt et al.) EPS09 LO no comovers (Ferreiro) 0.6 EPS09 LO + comovers (Ferreiro) $\langle N^{\text{mult}}$ $\langle N_{coll}^{mult} \rangle$ 10 2 10 0 2 8 6 10

- At backward rapidity results are consistent with binary-scaled pp within uncertainties
- \bullet At mid and forward rapidities J/ ψ are suppressed for all centralities
- Pure nPDF model reproduces centrality dependence (huge uncertainties)
- nPDF+comovers model: Effect of comovers small at forward. Increases towards backwards
- Coh. E.loss model describes shape and magnitude of data

No model can be ruled out with the present exp./th. uncertainties

RESULTS IN p-Pb: EVENT ACTIVITY

- Strong increase of J/ ψ yields at fwd. and bwd. rapidity with multiplicity at low $dN_{ch}/d\eta$
- At bwd. rapidity close to linear behavior, deviation at fwd. rapidity and high $dN_{ch}/d\eta$
- R_{FB} decreases with increasing event activity. Similar behaviour at different $|y_{CMS}|$

Measurements at **high event activity** can help to constrain CNM models

RESULTS IN p-Pb: CONCLUSIONS

• CNM models fairly describe LHC and RHIC charmonia data. Current experimental uncertainties and nPDF ones avoid to discriminate among different models

• Measurements show than nPDF alone might not be sufficient to reproduce data.

• Current implementations of CNM effects don't explain $\Psi(2S)$ data. Final state effects (dissociation by comovers) or hot medium?? (Phys. Lett. B 728 (2014) 437-442)

• Measurements at high event activity allows to study regimes where fluctuations on particle production are big (impact param. \sim 0), and can help to constrain models

OUTLOOK:

- Big systematics: update experimental results with pp@5TeV reference (Run2)
- Limited $\psi(2S)$ statistics: more coming in Run2
- Run2 p-Pb results @ 8 TeV will help to constrain models
- U_2 measurements in p-Pb can give insight to whether a collective medium is formed or not

RESULTS IN Pb-Pb: LOW pt

- Significantly less suppression than at lower energy
- No strong centrality dependence for $N_{part} > 70$
- Statistical hadronization and transport models describe the data ((re)combination)
- Shadowing-comovers-recombination model also describes data
- Need a precise measurement of σ_{cc} and CNM effects in p-Pb to sharpen the conclusions

First hint of recombination

RESULTS IN Pb-Pb: LOW pt

- Less suppression at low p_T than at lower energies
- Transport model describes the data

Recombination contribution important al low p_T

RESULTS IN Pb-Pb: HIGH pt

- Increasing suppression from peripheral to central events
- No significant rapidity or p_T dependence
- Complements ALICE (low-p_T) results

RESULTS IN Pb-Pb: 2.76 vs. 5.02 TeV

• Results consistent within uncertainties

not discussed here

- $R_{AA} > I$ for peripheral events. Excess concentrated at low $p_T: J/\psi$ from photoproduction
- Similar p_T dependence: Recombination stronger at low p_T
- Hint of an increase on R_{AA} at 5 TeV with respect to 2.76 TeV in 2 < p_T < 6 GeV/c

CMS J/ψ R_{AA} results @5TeV coming early 2017!

RESULTS IN Pb-Pb: ψ (2S) **vs** J/ ψ

- $\psi(2S)$ is more suppressed than J/ψ for most of the centrality bins
- No strong N_{part} dependence at 5.02 TeV
- Good agreement between 2.76 and 5.02 TeV results for most of the bins. Difference
- (~3 s.d.) only for peripheral events in 1.6 < |y| < 2.4

RESULTS IN Pb-Pb: NON-PROMPT J/ ψ

- Strong non-prompt J/ ψ suppression increasing with centrality and $\ensuremath{p_{T}}$
- $R_{AA}(non-prompt J/\psi) > R_{AA}(prompt D) \approx R_{AA}(light partons)$
 - Indication of smaller energy loss of b quarks at $p_T < 20$ GeV/c

Note: shape of quark p_T distr. and fragmentation fnc. are different for c and b. Models predict R_{AA} (non-prompt J/ ψ) > R_{AA} (prompt D)

JEP 11 (2015) 205

RESULTS IN Pb-Pb: U_2

ALICE:

- 2σ significance of nonzero v_2 in $2 < p_T < 4$ GeV/c
- Transport models assuming thermalization of b quarks qualitatively describes the data
- Further hint of recombination at low p_T

CMS:

• 3.3 σ significance of nonzero v_2 in 6.5 < p_T < 30 GeV/c

RESULTS IN Pb-Pb: U_2

- First measurement of non-prompt $J/\psi v_2 v_2 \approx 0$ within unc.
- Large uncertainties:
 - Low p_T : b quarks also participate in the collective expansion of the medium?
 - High p_T : quark-flavor path-length dependance of E.loss?

RESULTS IN Pb-Pb: CONCLUSIONS

- R_{AA} (@2.76 TeV) shows less suppression at LHC energies than at lower energies. **Suggest** recombination component on J/ ψ production
- R_{AA} (@2.76 TeV) shows less suppression at low p_T at LHC energies than at lower energies. Important contribution of **recombination at low p**
- $\psi(2S)$ is more suppressed than J/ψ (@5.02 TeV) for all centralities
- R_{AA} (non-prompt J/ ψ) > R_{AA} (prompt D) $\approx R_{AA}$ (light partons). Indication of **smaller** energy loss of b quarks at $p_T < 20$ GeV/c
- Non negligible J/ ψ V₂ (@2.76 TeV) at intermediate p_T . Further hint of recombination
- First measurement of non-prompt J/ ψ v₂ (@2.76 TeV) is consistent with zero with big uncertainties. No conclusions can be drawn

OUTLOOK:

- \bullet Need precise measurement of σ_{cc}
- Improve understanding of CNM effects needed to refine conclusions
- Need more differential $\psi(2S)$ measurements
- Improve significance of V_2 measurements

More run2 charmonia measurements coming soon: Stay tuned!!

THANK YOU FOR YOUR ATTENTION