Inclusive J/Ψ production in the dimuon channel in pp collisions at $\sqrt{s}=5.02$ TeV at the ALICE

Jana Crkovská

analysis performed in collaboration with Benjamin Audurier & Philippe Pillot

Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France

Rencontres QGP-France 2016 October 10-13, 2016

1/21

Outline

- Introduction
- Experimental Setup
- **3** Analysis of J/Ψ in the dimuon channel
- opp cross-section @ 5.02 TeV
- 6 Conclusion

Charmonia as a probe of the QGP

- heavy guarks produced in the initial hard scattering
- their initial spectra not affected by the medium
- presence of QGP will modify spectra of $c\bar{c}$ bound states

Debye-like colour screening

- high density of free colour charges in the medium causes colour screening in presence of QGP → bound states cease to exist
- less tightly bound states "melt" first sequential suppression

J/Ψ as a probe of the QGP

Other effects taking place...

- feed-down contribution from higher $c\bar{c}$ states, B-hadrons
- cold nuclear matter effects
- at LHC energies, recombination of $c\bar{c}$ pairs in the medium $N_{c\bar{c}}^{LHC}\sim 10N_{c}^{RHC}$
- very low- $p_T J/\Psi$ production (most likely) from photo-production

ALICE Col., JHEP 05 (2016) 179

Why measure J/Ψ in pp collisions

- understand the production mechanism see Astrid Morreale's talk, Nov 11 09.00
- reference for A-A measurement

Nuclear modification factor R_{AA}

 production/suppression rates studied via Nuclear Modification factor R_{AA}

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{\mathrm{d}^2 N_{AA} / \mathrm{d} p_T \mathrm{d} y}{\mathrm{d}^2 \sigma_{DD} / \mathrm{d} p_T \mathrm{d} y}$$

- ⇒ directly compares behaviour in pp and in A-A
 - R_{AA} < 1 suppression due to medium
 - $R_{AA} > 1$ enhancement
 - R_{AA} = 1 A-A is just a superposition of N_{coll} · pp OR both previous effects compensate
- compare with theoretical models
 - all models include dissociation by the hot medium + recombination to reproduce data
 - good agreement with ALICE data within uncertainty

r_{AA}

• recombination can be studied by means of r_{AA}

$$r_{AA} = rac{\left\langle p_T^2
ight
angle_{AA}}{\left\langle p_T^2
ight
angle_{pp}}$$

• thermalised c quarks decrease $\langle p_T \rangle$

- compared SPS, RHIC and LHC energies
- SPS increase due to Cronin effects
- RHIC r_{AA} consistent with 1
- Pb-Pb at 2.76 TeV significant decrease of r_{AA} with increasing centrality

ALICE Col., JHEP 05 (2016) 179

ALICE detector

ALICE = A Large Ion Collider Experiment

Dimuon sample from Muon Spectrometer

V0 provides MB trigger, rejects beam-gas iteraction, centrality (A-A)

T0 MB trigger

ITS collision vertex

ZDC rejects UPC (A-A)

Muon spectrometer

Muon Spectrometer

- covers rapidity 2.5 < y < 4
- $0<\phi<2\pi$
- front absorber background reduction
 - stops muons from π , K decays
 - · stops hadrons produced in absorber itself
- dipole magnet + MCH detection of dimuon pair
- MTR shielded by an absorber on each side
 - excludes noise from beam-gas interactions

Analysis of $J/\Psi \longrightarrow \mu^+ + \mu^-$ in pp at 5.02 TeV

$$\frac{\mathsf{d}^2 \sigma_{J/\Psi}^{pp}}{\mathsf{d} p_\mathsf{T} \mathsf{d} y} = \frac{\frac{\mathsf{d}^2 N_{J/\Psi}^{pp}/\mathsf{d} p_\mathsf{T} \mathsf{d} y}{\mathsf{d}^2 N_{J/\Psi}^{pp}/\mathsf{d} p_\mathsf{T} \mathsf{d} y}}{\mathsf{B} R_{J/\Psi \to \mu \mu} \mathsf{A} \times \varepsilon} \times \frac{\sigma_{MB}^{pp}}{N_{evt}^{MB}}$$

$$\frac{\mathsf{detector}}{\mathsf{response}}$$

- σ_{MB}^{pp} from independent measurement and/or data
- $A \times \varepsilon$ computed from simulations
- $BR_{J/\Psi o \mu^+ + \mu^-} = 5.96 \pm 0.03\%$ (PDG)

We analysed a sample of $\sim 1.2 M$ events with dimuon trigger fired.

J/Ψ Signal Extraction

Kinematical cuts

single muon criteria:

$$\star -4 < \eta < -2.5$$

$$\star$$
 2° < Θ_{Abs} < 10°

⋆ Lpt trigger matching

pair criteria:

 \star 2.5 < v < 4 required for the dimuon pair

Fitting functions

- signal as CB2E and NA60
- background: VWG and Pol1/Pol2
- 1.7 $< M_{inv} <$ 4.8 GeV/ c^2 and 2.0 $< M_{inv} <$ 4.4 GeV/ c^2

Integrated over
$$0 < p_T < 12 \text{ GeV}/c$$

$$N_{J/\Psi} = 8649 \pm 123 \pm 297$$

Acceptance-efficiency $A \times \varepsilon$

- correction for detector effects
- not all produced μ fire a trigger in the spectrometer
- MC simulations tuned to data through an iterative procedure

$$0 < p_T < 12~{\rm GeV}/c:~A \times \varepsilon = \mathbf{0.2435} \pm \mathbf{0.0003} \pm \mathbf{0.0049}$$

Systematics on $A \times \varepsilon$

Finite statistics

- related to statistical uncertainty on the data points
- gaussian smearing of the distribution within stat. uncertainty
- new set of shapes used to recompute $A \times \varepsilon$
- resulting systematics < 0.1%

Systematics on $A \times \varepsilon$

$p_T - y$ correlations

- not enough statistics to carry 2D signal extraction
- p_T/y distributions at 13 TeV and 7 TeV (LHCb)
- re-weight our distributions and recompute $A \times \varepsilon$
- integrated over p_T and y amounts to 2%

Normalisation Factor F_{norm}

Determine the equivalent N_{MB}^{eq} corresponding to N_{CMUL7} analysed $N_{MB}^{eq} = \sum F_{norm}^i \times N_{MUL}^i$

• correction for pile-up $F_{Pile-Up}$ and purity $F_{purity} = \frac{N_{CINT7}(PhysicsSelected)}{N_{CINT7}(ALL)}$

$$\mu = -\ln\left(1 - rac{F_{purity}^{MB} imes L0brate_{MB}}{N_{coll} imes f_{LHC}}
ight)$$
 $F_{Pile-Up} = rac{\mu}{1 - e^{-\mu}}$

3 different methods:

- direct offline method: $F_{norm} = \frac{\text{CINT7}}{\text{CINT7&0MUL}} \times F_{Pile-Up}$ not enough statistics!
- 2-step offline method: $F_{norm} = \frac{\text{CINT7}}{\text{CINT7\&OMSL}} \times \frac{\text{CMSL7}}{\text{CMSL7\&OMUL}} \times F_{Pile-Up}$
- online scalers method (CINT7/C0TVX): $F_{norm} = \frac{\text{L0b}(\text{MB})}{\text{L0b}(\text{CMUL7})} \times \frac{\text{PS}_{\text{MB}}}{\text{PS}_{\text{CMUL7}}} \times F_{\textit{Pile-Up}}$

F_{norm}

Assuming fully uncorrelated errors:

V0 (CINT7)
$$\sim F_{norm} = 4736.87 \pm 60.29$$

T0 (C0TVX)
$$\sim F_{norm} = 1960.18 \pm 1.67$$
.

Integrated luminosity Lint

In the presented result we used the F_{norm} computed from the T0 scalers.

$$L_{int} = \frac{N_{MB}}{\sigma_{vdM}} = \frac{N_{MUL}^{tot} \times F_{norm}}{\sigma_{vdM}}$$

16/21

$$L_{int} = 106.28 \pm 0.09(stat) \pm 2.23(syst) \text{ nb}^{-1}$$

pp cross-section @ 5.02 TeV

$$\sigma_{J/\Psi}^{\rho\rho} = \frac{1}{\Delta p_T \Delta y} \frac{N_{J/\Psi}(\Delta p_T, \Delta y)}{BR_{J/\Psi \to \mu^+ + \mu^-} A \times \varepsilon(\Delta p_T, \Delta y)} \frac{1}{L_{int}}$$

$$\sigma^{
ho
ho}_{J/\Psi}=$$
 5.61 \pm 0.08 \pm 0.28 μ b

Comparison to interpolation

interpolation done by ALICE+LHCb
 (ALICE-PUBLIC-2013-002) to be used as a
 reference for Run 1 p-Pb measurement at 5.02 TeV

$$\sigma_{J/\Psi}^{pp,int}=$$
 5.28 \pm 0.42 μ b

good agreement between data and interpolation

pp cross-section 5.02 TeV VS 2.76 TeV

- improved tracking + better statistics ⇒ lower uncertainties
- \sim 9000 J/Ψ in 5.02 TeV X \sim 1400 J/Ψ in 2.76 TeV
- improvement of R_{AA} uncertainty see Benjamin Audurier's talk, Nov 11 11.45

Mean p_T

$\langle p_T \rangle$ extraction method

• corrected p_T spectra fitted with

$$f(p_T) = \frac{[0]p_T}{(1 + (p_T/[1])^2)^{[2]}}$$

• compute $\langle p_T \rangle$ as the mean of $f(p_T)$

- 2 ways to compute error
- from a 1 σ contour compute $\langle p_T \rangle$ and $\langle p_T^2 \rangle$ from the points on the contour
- through error propagation from covariance matrix of the fit
- both methods give similar results

$$\langle p_T \rangle = 2.3204 \pm 0.0231 \pm 0.0170$$

 $\langle p_T^2 \rangle = 7.4144 \pm 0.1276 \pm 0.0733$

19/21

Mean p_T and r_{AA}

- $\langle p_T \rangle$ and $\langle p_T^2 \rangle$ for Pb-Pb computed by Mohamad T.
- r_{AA} @5.02TeV consistent within uncertainty r_{AA} @2.76TeV
- \bullet the former systematically above the latter harder spectra with increasing \sqrt{s}

20 / 21

Conclusions

- first ALICE measurement on the inclusive $J/\Psi \rightarrow \mu^+ + \mu^-$ in pp at $\sqrt{s} = 5.02$ TeV
- first result on $\sigma_{J/\Psi}^{pp} = 5.61 \pm 0.08 \pm 0.28 \; \mu \mathrm{b}$
- interpolated $\sigma_{J/\Psi}^{pp,interpolated}$ in good agreement with the data
- we have taken a look at $\langle p_T \rangle$ and r_{AA}
- centrality dependence of r_{AA} consistent with Pb-Pb at 2.76 TeV in favour of recombination

Thank you for your attention!