Playing with color pictorial rules: Anomalous dimension matrix

Author:
Florian Cougoulic

Supervisor: Stéphane Peigné

Etretat 10-13 October 2016

Overview

- Motivation
- Perturbation theory and all order analysis
- Color structure for non trivial process
- Quark-Quark case.
- "Intuitive way"
- "Tricky way"
- Prospects

pTheroy

Motivation

When does the problem arise?

Computation of soft or/and collinear gluons emissions :

- Soft and collinear radiation brings a double logarithm L^{2}
- Soft and non-collinear radiation brings a single logarithm L^{1}.

If those logarithms are big enough $\alpha_{s} L^{2}$ (or $\alpha_{s} L^{1}$) can be of order $\sim \mathcal{O}(1)$.

Perturbation theory

Inherited from renormalization group procedure for UV divergences, the running of coupling α_{s} is

$$
\begin{equation*}
\alpha_{s}(Q)=\frac{2 \pi}{b_{0} \log (Q / \Lambda)} \tag{2.1}
\end{equation*}
$$

We need to control emerging logarithm at each order in α_{s} so we can still use perturbative approach!

Color structure

Motivation - Solve the problem ?

Resuming logarithms, a very long history since $p Q C D$ beginning...
The quick way to address all order analysis
Consider (multiple) real emission :

All order analysis

Correction in "Global observable" due to large and soft angle gluons.

$$
\begin{equation*}
\mathcal{M}_{0}^{e l} \rightarrow \prod_{i} F_{i}\left(Q_{i}, Q_{0}\right) \cdot F_{x}\left(\tau_{0}\right) \cdot \mathcal{M}_{0}^{e l}, \quad \tau_{0}=\int_{Q_{0}}^{Q} \frac{d k_{\perp}}{k_{\perp}} \frac{\alpha\left(k_{\perp}\right)}{\pi} \tag{2.2}
\end{equation*}
$$

F_{X} : collinear finite / depend on τ_{0} and s, t, u variable of the hard process.

Yu.L. Dokshitzer and G.Marchesini, JHEP 0601 (2006) 007 [hep-ph/0509078]
Cross channel form factor F_{X}

$$
\begin{equation*}
\mathcal{M}\left(\tau_{0}\right)=\underbrace{e^{\left(\lambda-\tau_{0}\right) \Gamma_{c}}}_{\text {Cancel }} \underbrace{e^{\tau_{0} \Gamma}}_{\text {Talk }} \mathcal{M}_{0}, \quad-\Gamma \equiv T_{t}^{2} \ln \frac{s}{-t}+T_{u}^{2} \ln \frac{s}{-u} \tag{2.3}
\end{equation*}
$$

Motivation - Anomalous dimension Matrix \mathcal{Q}

Anomalous dimension matrix \mathcal{Q}

Define as

$$
\begin{equation*}
F_{X}=e^{-\tau_{0}(T+U) \cdot Q} \tag{2.4}
\end{equation*}
$$

Q is a matrix in color space. Valid for any involved partons (quark, gluons, ...)

$$
\begin{equation*}
\mathcal{Q}=\frac{\left(T_{t}^{2}+T_{u}^{2}\right)+b\left(T_{t}^{2}-T_{u}^{2}\right)}{2 N_{c}} \tag{2.5}
\end{equation*}
$$

Complication ?

No color-triviality in $2 \rightarrow 2$ process. How to compute the soft anomalous dimension ?
Return to s-channel ?
Gluons case in [DM] $\quad 8 \otimes 8=27 \oplus 0 \oplus(10 \oplus \overline{10}) \oplus 8 s \oplus 8 a \oplus 1$
Of the 6 eigenvalues of $\mathcal{Q}, 3$ present an unexpected symmetry:

$$
\begin{equation*}
\left[E_{i}-\frac{\mathbf{4}}{\mathbf{3}}\right]^{\mathbf{3}}-\frac{\left(\mathbf{1}+\mathbf{3} b^{2}\right)\left(\mathbf{1}+\mathbf{3} / N_{c}^{2}\right)}{\mathbf{3}}\left[E_{i}-\frac{\mathbf{4}}{\mathbf{3}}\right]-\frac{\mathbf{2 (\mathbf { 1 } - \mathbf { 9 } b ^ { 2 }) (\mathbf { 1 } - \mathbf { 9 } / N _ { c } ^ { 2 })}}{27}=\mathbf{0} \tag{2.6}
\end{equation*}
$$

Aim : To get insight of color structure of ($2 \rightarrow 2$ process)
How? We explore this symmetry in various cases

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4 : Compute quadratic casimirs for t-channel representations
5 : Compute \mathcal{Q} and its eigenvalues
P. Cvitanovic, "Group Theory, Birdtracks, Lie's, and Exceptionnal Groups" Yu. L. Dokshitzer, "Perturbative QCD (and Beyond)"

A bit of notation

To construct color multiplet (invariant under $\operatorname{SU}\left(N_{c}\right)$), we use pictorial notations :

The primitive invariant of $\operatorname{SU}\left(N_{c}\right)$ is

The adjoint representation generator

$$
\left(t^{a}\right)_{j}^{i}=i \rightarrow \underset{\substack{\mathbf{i} \\ a}}{j}
$$

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4 : Compute quadratic casimirs for t -channel representations
5 : Compute \mathcal{Q} and its eigenvalues

Step 1

From Young-Tableau decomposition $\longrightarrow \quad \square \otimes \square=\square \square \oplus \square=6 \oplus \overline{3}$
Projection-operators (s-channel) are :

$$
\mathcal{P}_{6}=\frac{1}{2}\left[\underset{\longrightarrow}{\longrightarrow}+\ngtr>\mathcal{P}_{3}=\frac{1}{2}[\underset{\longrightarrow}{\longrightarrow}-\ngtr\right.
$$

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4: Compute quadratic casimirs for t-channel representations
5 : Compute \mathcal{Q} and its eigenvalues

Step 2

We also get from YT, t-channel decomposition : $\overline{3} \otimes 3=8 \oplus 1$

How did we find both coefficients ?
We use Fierz identity in its pictorial form (Rotated)

$$
\rightarrow \quad \square=\frac{1}{N_{c}} \longrightarrow \begin{aligned}
& \longrightarrow \\
& \vdots
\end{aligned}
$$

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4 : Compute quadratic casimirs for t -channel representations
5 : Compute \mathcal{Q} and its eigenvalues

Step 3

Express both

$$
\mathcal{P}_{1}^{(t)}=\frac{1}{N_{c}} \cdot \stackrel{\downarrow}{\rightarrow} \quad \mathcal{P}_{8}^{(t)}=2 \cdot \xrightarrow[\rightarrow]{\rightarrow}
$$

as a combination of

$$
\mathcal{P}_{6}^{(s)}=\frac{1}{2}[\longrightarrow \longrightarrow \nrightarrow \underset{\sim}{\longrightarrow}+\underset{\sim}{\longrightarrow}]
$$

How? $\quad \rightarrow$ Use again Fierz identity!

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4 : Compute quadratic casimirs for t -channel representations
5 : Compute \mathcal{Q} and its eigenvalues

Step 3

In s-channel basis, t-channel operators are

$$
\mathcal{P}_{\mathbf{1}}=\frac{1}{N_{c}} \longrightarrow \mathcal{P}_{8}=\frac{-1}{N_{c} \longrightarrow}\left[\mathcal{P}_{6}+\mathcal{P}_{3}\right]
$$

One can define the following matrix $K_{t s}$ as $\mathcal{P}^{(t)}=\sum K_{t s} \cdot \mathcal{P}^{(s)}$.

$$
\left(K_{t s}\right)=\left(\begin{array}{cc}
1 / N_{c} & 1 / N_{c} \\
1-1 / N_{c} & -1-1 / N_{c}
\end{array}\right)_{\beta \alpha}, \quad \alpha \equiv\left\{\mathcal{P}_{6}, \mathcal{P}_{3}\right\}, \beta \equiv\left\{\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{8}\right\}
$$

"Intuitive way"

Plan of flight

1 : Find s-channel projection-operator basis
2 : Find t-channel projection-operator basis
3 : Express t-channel color-structures into s-channel color-strucures [!!]
4 : Compute quadratic casimirs for t-channel representations
5 : Compute \mathcal{Q} and its eigenvalues

Step 4 and 5

t-channel casimirs are common knowledge : $c_{1}=0$ and $c_{8}=N_{c}$. And the matrix is in s-channel basis

$$
T_{t}^{2}=K_{s t} c^{(t)} K_{t s}=\frac{1}{2}\left(\begin{array}{cc}
N_{c}-1 & -1-N_{c} \\
1-N_{c} & 1+N_{c}
\end{array}\right)
$$

The anomalous dimension matrix \mathcal{Q} is given by

$$
\mathcal{Q}=\frac{\left(T_{t}^{2}+T_{u}^{2}\right)+b\left(T_{t}^{2}-T_{u}^{2}\right)}{2 N_{c}}=\frac{1}{2 N_{c}}\left(\begin{array}{cc}
N_{c}-1 & -b\left(N_{c}+1\right) \\
-b\left(N_{c}-1\right) & N_{c}+1
\end{array}\right)
$$

"Tricky way"

Quark-quark scattering: Another way. Diagrammatic form of casimirs for a given irrep.

Expand $\left(T_{R 1}+T_{R 1}\right)^{2}$.
It gives us the relation

Remember t-channel projection operators

$$
\mathcal{P}_{\mathbf{1}}^{(t)}=\frac{1}{N_{c}} \cdot \xrightarrow{\longrightarrow}
$$

$$
\mathcal{P}_{8}^{(t)}=2 \cdot \quad \xrightarrow{\rightarrow}
$$

$K_{t s}$ matrix is constructed from :

We find the following relation for $q q \rightarrow q q$

$$
K_{t s}=\left(-2\left(2 c_{q}-c_{6}\right) \quad-2\left(2 c_{q}-c_{\overline{3}}\right)\right)
$$

We didn't use s-channel projector expression to get $K_{t s}$!
Compute \mathcal{Q}
One can also compute Casimir in t-channel with diagrams or simply use YT-relations.
Remember $c_{1}=0$ and $c_{8}=N_{c}$.

$$
\mathcal{Q}=\frac{1}{2 N_{c}}\left(\begin{array}{cc}
N_{c}-1 & -b\left(N_{c}+1\right) \\
-b\left(N_{c}-1\right) & N_{c}+1
\end{array}\right)
$$

And

$$
\lambda^{2}-\lambda \operatorname{Tr}(\mathcal{Q})+\operatorname{Det}(\mathcal{Q})=\lambda^{2}-\lambda+\frac{1}{4}\left(1-1 / N_{c}^{2}\right)\left(1-b^{2}\right)=0
$$

Also present the same symmetry under $b \leftrightarrow 1 / N_{c}$

In the last 20 minutes:

- Diagrammatic color-rules for partons (valid for generalised partons: think of a compact partonic system).
- Compact expression for $K_{t s}$ and anomalous dimension matrix for $q \otimes q \rightarrow q \otimes q$

Have been used for :

- Systematic way to compute \mathcal{Q} for arbitrary large symmetric (or anti-symmetric) irreducible representation. We only use $S U\left(N_{c}\right)$ invariants.
- $\rho \otimes \rho \rightarrow \rho \otimes \rho, 2$ weak symmetry for each \mathcal{Q} computed.

Prospects for this project :

- Generalize to arbitrary YT with mixed symmetry...
- Understand $b \leftrightarrow 1 / N_{c}$ symmetry ?
- Applications to phenomenology "induced radiation spectrum", "dijet broadening", ...

In the last 20 minutes:

- Diagrammatic color-rules for partons (valid for generalised partons: think of a compact partonic system).
- Compact expression for $K_{t s}$ and anomalous dimension matrix for $q \otimes q \rightarrow q \otimes q$

Have been used for :

- Systematic way to compute \mathcal{Q} for arbitrary large symmetric (or anti-symmetric) irreducible representation. We only use $S U\left(N_{c}\right)$ invariants.
- $\rho \otimes \rho \rightarrow \rho \otimes \rho, 2$ weak symmetry for each \mathcal{Q} computed.

Prospects for this project :

- Generalize to arbitrary YT with mixed symmetry...
- Understand $b \leftrightarrow 1 / N_{c}$ symmetry ?
- Applications to phenomenology "induced radiation spectrum", "dijet broadening", ...

Thank's for your attention! Any questions?

Consider a given irep λ in $R \otimes R^{\prime}$ product :

$$
\lambda=\underset{\substack{\uparrow \uparrow \\ b_{1} b_{2}}}{\square}
$$

Equivalence between YT and Birdtracks. Dimensions are given by

$$
\begin{equation*}
d_{\lambda}=\frac{N_{c}+d}{y}=\operatorname{Tr}\left[\mathcal{P}_{\lambda}\right] \tag{5.1}
\end{equation*}
$$

Quadratic casimir,

$$
\begin{align*}
c_{\lambda} & =\frac{(2 a)}{2}\left(\rho \frac{N_{c}-\rho}{N_{c}}+\sum_{i} a_{i}^{2}-\sum_{j} b_{j}^{2}\right) \tag{5.2}\\
& =\left[C_{R}+C_{R^{\prime}}-2 V\left(R, R^{\prime}\right)\right] \mathcal{P}_{\lambda}
\end{align*}
$$

Generalised parton

A parton in a non trivial color representation λ (given by its young tableau) different from the fundamental, dual and adjoint representation.
Pictorially :

(Wigner-Eckart theorem)

Process

Consider a fully symmetric state of ρ boxes in its $\mathrm{YT} \rightarrow 12 \cdots \rho$
Process $\rho \otimes \rho \rightarrow \rho \otimes \rho$ in s-channel.
Step B Before looking for a decomposition in t-channel projection-operators, we need a tensor basis.

t-channel projection operators are a sum of those terms.
Our job is to find those $n_{i}^{(\lambda)}$!

Step B, n_{i} 's ?

- Dimension, orthogonality, trace.
- And a bit of drawing ...

$$
\left(\begin{array}{cccc}
\mathcal{B}_{0} & \mathcal{B}_{1} & \cdots & \mathcal{B}_{\rho} \\
\mathcal{C}_{0} & \mathcal{C}_{1} & \cdots & \mathcal{C}_{\rho} \\
\mathcal{C}_{1} & \mathcal{C}_{2} & \cdots & \mathcal{C}_{\rho+1} \\
\vdots & & & \vdots \\
\mathcal{C}_{\rho-1} & \mathcal{C}_{\rho} & \cdots & \mathcal{C}_{2 \rho-1}
\end{array}\right) \cdot\left(\begin{array}{c}
n_{0} \\
n_{1} \\
n_{2} \\
\vdots \\
n_{\rho}
\end{array}\right)^{(\rho)}=\left(\begin{array}{c}
K_{\rho} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Where \mathcal{C}_{i} 's and \mathcal{B}_{i} 's are scalars.
$\mathcal{C}_{i}=$

Step C: Rotate t-channel (previous-YT) to s-channel.

$$
K_{t s}(\rho \alpha)=\sum_{i=0}^{\rho} n_{i}\left(\frac{2 c_{\rho}-c_{\alpha}}{2}\right)^{i} \mathcal{P}_{\alpha}
$$

Step D and E Use YT to compute casimirs and done!

$$
\begin{aligned}
\mathcal{Q} & =\frac{1}{2 N_{c}}\left[\left(K_{s t} c^{(t)} K_{t s}\right)+\sigma^{ \pm}\left(K_{s t} c^{(t)} K_{t s}\right) \sigma^{ \pm}\right] \\
& +\frac{b}{2 N_{c}}\left[\left(K_{s t} c^{(t)} K_{t s}\right)-\sigma^{ \pm}\left(K_{s t} c^{(t)} K_{t s}\right) \sigma^{ \pm}\right]
\end{aligned}
$$

Result for $\rho=6$

$$
\left(\begin{array}{ccccccc}
3-\frac{3}{N c} & -\frac{3 b(11+N c)}{11 N c} & 0 & 0 & 0 & 0 & 0 \\
3 b\left(-1+\frac{1}{N c}\right) & 3+\frac{3}{N c} & -\frac{5 b(10+N c)}{9 N c} & 0 & 0 & 0 & 0 \\
0 & -\frac{30 b}{11} & \frac{3+\frac{8}{N c}}{-1+N c)} & -\frac{6 b(9+N c)}{7 N c} & 0 & 0 & 0 \\
0 & 0 & -\frac{22 b(1+N c}{9 N c} & \frac{3(4+N c)}{N c} & -\frac{6 b(8+N c)}{5 N c} & 0 & 0 \\
0 & 0 & 0 & -\frac{15 b(2+N c)}{7 N c} & \frac{3(5+N c)}{N c c} & -\frac{5 b(7+N c)}{3 N c} & 0 \\
0 & 0 & 0 & 0 & -\frac{9 b(3+N c)}{5 N c} & 3+\frac{17}{N c} & -\frac{3 b(6+N c)}{3(6+N c)} \\
0 & 0 & 0 & 0 & 0 & -\frac{4 b(4+N c)}{3 N c} & \frac{3(6+N c)}{N c}
\end{array}\right)
$$

Two eigenvalues have a weaker version of the symmetry $b \leftrightarrow 1 / N_{c}$:

$$
\lambda \rightarrow 3(1+b) \text { and } \lambda \rightarrow 3(1-b)
$$

