FCC-hh beam instruments

FCC-hh new baseline

- Two high-luminosity experiments (A and G)
- Two other experiments (B and L):
 - Injection through experiments!
- One collimation insertions in J
- Extraction insertion in D
- •
- One insertions with RF
- One insertion with energy collimation
- Circumference 100km
- •
- Can use LHC or SPS as injector

FCC-hh injector studies

compatible with: SPS_{upgrade}, LHC, FCC booster

Machine parameters

Regular arc cell

Interaction region

Parameters				
Parameter		Value		
Energy	TeV	50		
Circumference	km	100.171		
eta^*	m	0.3		
L*	m	45		
α	10^{-4}	1.008		
γtr	-	99.580		
Q_X	-	111.31		
Q_y	-	108.32		
Q'_{X}	-	2		
Q'_{V}	-	2		
# dipoles MB	-	4616		
MB field	Т	15.93		
# quadrupoles MQ	-	846		
Max grad MQ	T/m	370 ^a		
# sextupoles MS	-	710		
Max grad MS	T/m^2	18670		
a. in the arcs				

Beam parameters

	(HL)-LHC	FCC-hh baseline	FCC-hh ultimate
Collision energy [TeV]	14	100	100
Dipole field [T]	8.3	16	
Luminosity L [10 ^{^34} cm ⁻² s ⁻¹]	(5) 1	5	20-30
Normalized emittance [um]	(2.5) 3.5	2.2 (0.44)	
Bunch intensity [10 ^{^11}]	(2.2) 1.15	1 (0.2)	
Bunch spacing [ns] (option)	25	25 (5)	
Beta* [m]	(0.15) 0.55	1.1	0.3
Number of bunch	2808	10600 (53000)	
IP beam size [um]	16.7	6.8 (3)	3.5 (1.6)
Rms bunch length [cm]		8	
Stored energy/beam [GJ]	(0.7) 0.36	8.4	
Synchrotron rad. [W/m/beam]	(0.35) 0.18	30	
Dipole coil aperture [mm]	56	40	

Synchrotron radiation/beam screen

High synchrotron radiation load of protons @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)</p>
- 5 MW total in arcs

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- avoids photo-electrons, helps vacuum

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

First FCC-hh beam screen prototype Testing 2017 in ANKA within EuroCirCol

List of instruments:

- beam position + AC-dipole + k-modulation+ coupling
- tune, chromaticity
- beam intensity (DC, bunch to bunch), lifetime
- beam losses
- transverse profiles
- abort gap population
- longitudinal profiles
- specific instrumentation for machine protection: (aka interlocked BPMs, beam presence flags...)

□ In LHC, used to measure:

 Injection trajectories, closed orbits, dispersion, coupling, optics (via phase advance), resonance driving terms etc

Functionality:

- Measurement of the closed orbit
- provide turn-by-turn data for injection oscillations, optics measurements...
- Closed orbit used for Orbit and radial position real-time feedback

- □ Machine protection, Interlocked BPM?
- A few special BPMs should provide high resolution (μm) bunch-by-bunch and turn-by-turn data for special purposes (instability observations etc).

Alignment tolerance comparable to LHC:

- 100 um in the arc
- 50 um in IR

□=> LHC-like BPM system but Synchrotron Radiation!

- Based on LHC BLM system:
 - Quench protection \rightarrow beam loss scenarios needed
 - UFO detection
 - Vacuum spike detection?
- Continuous/discrete measurements?
- Simulation needed

Other instruments

Functionality:

Tune measurement

Cohabitation with transverse feedback

Transverse profiles:

□ SR in the arc: critical photon energy 0.575 keV (0.044 keV in LHC)

Beam intensity : DC, bunch by bunch, lifetime

□ Same dynamic range as LHC: from 5x10^{^9} to 1 10^{^11}

Abort gap population

Longitudinal profiles

Obs Box