Large Area Picosecond Photo-Detector (LAPPDTM): Present Status and Prospects

A. Lyashenko, Incom Inc.

INDOM

Bright Ideas in Fiberoptics

LAPPD Collaboration:

- A. Lyashenko (alyashenko@incomusa.com), M. J. Minot, B. W. Adams, M. Aviles, J. L. Bond, C. A. Craven, T. Cremer, M. R. Foley, M. A. Popecki, M. E. Stochaj, W. A. Worstell, Incom Inc, Charlton, MA
- J. W. Elam, A. U. Mane, Argonne National Laboratory
- O. H. W. Siegmund, C. Ertley, University of California, Berkeley
- H. J. Frisch, A. Elagin, University of Chicago

Motivation:

- Large Area: 200 x 200 mm²
- Picosecond Timing: resolution <100pS for SPE
- PMT Sensitivity: QE ~20% w/bi-alkali photocathode
- Lower Cost per Unit Area
- Sub-mm spatial resolution
- Flat Geometry

Applications:

HEP and others [homeland security sensors, astronomy, electron microscopy, TOF mass spectrometry, molecular and atomic collision studies, fluorescence imaging, plenoptic and medical imaging (PET scanning) applications]

Goals

Produce Fully Functional Detector
Demonstrate Pilot Production

Henry J. Frisch, et. al., A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration, http://arxiv.org/abs/1603.01843 March 2016

Lower Tile Assembly

Power & Signal Anode Strips - pass under the hermetic seal providing a "penetration free" connection into and out of the tile.

Groove Filled with Molten Indium Alloy for top window sealing

Incom ALD MCPs:

O.H.W. Siegmund et al., "Large area event counting detectors with high spatial and temporal resolution," 15th International Workshop on Radiation Imaging Detectors, 2013 O.H.W. Siegmund et al., NSS/MIC, IEEE.N45-1, (2011) 2063

ALD MCP Performance:

Gain Uniformity Map

20 micron pores

Dark Noise: 0.1 – 1 cts/sec/cm²

O.H.W. Siegmund et al., "Large area event counting detectors with high spatial and temporal resolution," 15th International Workshop on Radiation Imaging Detectors, 2013

Uniform Gain within ~15% across the area

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

NUCLEAR INSTRUMENTS & METHODS RESEARCH

journal homepage: www.elsevier.com/locate/nima

Timing characteristics of Large Area Picosecond Photodetectors

B.W. Adams^a, A. Elagin^b, H.J. Frisch^b, R. Obaid^c, E. Oberla^b, A. Vostrikov^b, R.G. Wagner^a, J. Wang^a, M. Wetstein^{b,*} The performance of LAPPD is well established

^a Argonne National Laboratory, United States

^{*} Argonne National Laboratory, United States ^b Enrico Fermi Institute, University of Chicago, United States based upon testing of the "Demountable"

^c University of Connecticut, United States

Absolute time resolutions

- Single-PE: consistently < 100 ps, typically < 60 ps,
 - Large pulses < 5 ps (differential)
 - **Spatial Resolutions**
 - Single-PE: ~500 microns

The Demountable LAPPD (unsealed)

- Dynamically pumped LAPPD Test Stand
- Incorporates standard LAPPD components
- Aluminum photocathode
- O-ring Top seal and retainer

Measured 50psec Transit **Time Variation** for Single Photoelectron

SPIE No. 996832 Michael Minot, Pilot Production of LAPPD A. Lyashenko, Incom LAPPD, Pico-Second Workshop, Kansas City Sept 15-18 2016

Temporal Resolution Better than 50 picoseconds

University of Chicago "demountable" station for testing 20 cm square LAPPDs (Matt Wetstein, Andrey Elagin)

Single PE

Sealing is the key

Window Stress vs Gap width

3.8 mil thick fused silica strength is ~ 2X that of borofloat, calculated stress for fracture is doubled

LAPPD Manufacturing Process:

1. Ultrasonic Cleaning

2. Plasma Cleaning

3. Metallization

4. Indium Mounting

5. Stack Assembly

6. Sealing

LAPPD Sealing Tank

Fully Bakeable up to 400C Base Vacuum <10⁻¹⁰Torr Multi-Alkali Photocathode deposition Hot Indium Seal

Tile Assembly

Loading Tray

Sealing Trials

Sidewall to window sealing trials Goal: Two Consecutive Seals

Leak rate <1x10-9 Torr-I/s, SEALED Sealing Trial #4

Leak rate <1x10-9 Torr-I/s, SEALED

12/15-17/2015

Sealing Trials (Mock Tile)

Window Deflection Measurements

No Changes after 5 months

Photocathode QE

----- QE 4/8 PC Shoot #6 QE LAPPD7 QE 0.14 0.3 ←QE 4/11 0.27 - QE @ 190C 0.12 ____QE 4/20 0.24 Estimated QE @ RT 0.1 0.21 QE @ 195C 0.18 0.08 4/7 В **梤** 0.15 0.06 0.12 0.09 0.04 0.06 0.02 0.03 0 0 350 450 500 550 600 350 400 450 300 400 650 300 500 550 600 Wavelength [nm] Wavelength [nm]

Na-K-Sb, Cs-Na-K-Sb QE~10% @ 190C, higher at RT

A. Lyashenko, Incom LAPPD, Pico-Second Workshop, Kansas City Sept 15-18 2016

650

2016 LAPPD Pilot Production Commissioning Trials

Performance Metric	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
2016 Seal date	02/05	02/22	03/10	04/28	5/20	06/08	07/13	8/23	9/13	Pendi ng
PC QE @190C, @365 nm	1%	4%	1%	6%	9.4%	4.5%	12%	9%	n/a	
HV Discharge Problems	NO	YES	NO	NO	NO	NO	NO	NO	NO	
Shorts or Connectivity Issues	YES	Signal lost upon venting	Signal lost upon venting	NO	NO	NO	NO	NO	NO	
Dark Current Detected	NO	<u>;;</u>	??	YES.	YES	YES	YES	YES	YES	
Stack Height	Excellent	Low	Low	High	High	Low	Excellent	Excellent	Excellent	
Indium Seal	Pass	Pass	Pass	Fail	Fail	Pass	Fail Dirty Window	Fail Dirty Window	Pass	
Vacuum Integrity	Excellent	Cracked window	Cracked window	Failed	Failed	Cracked window	Failed	Failed	Excellent	

LAPPD9 out of the chamber

Sealed LAPPD9 pulses

Recorded on the sealed tile in air

High trigger threshold due to periodic noise from the lamp

LAPPD9 DC operation

Conclusions

First 200mm × 200mm sealed Fully Functional LAPPD

Major Milestone!

To Do

- Pulse-height Spectra
- Timing Properties
- Spatial Resolution
- LAPPD with bi-alkali photocathode

Status of Pilot Production of LAPPDTMs

- Progress on infrastructure and process development has been steady:
 - A first-rate pilot production infrastructure, has been created, starting with **empty clean room about a year ago**
 - A talented, experienced team of scientists, engineers, and technicians has been assembled.
- Evolutionary optimization Steady progress on identifying & resolving technical issues:
 - Photocathode QE ☺
 - HV stability ☺
 - Shorts & Connectivity ☺
 - Dark Current ☺
 - Stack height issues ☺
 - Stack Height ☺
 - Vacuum Integrity ☺
 - UHV window transfer hardware improvements down pressure
- No technical roadblocks or insurmountable barriers encountered to date.
- A reproducible pilot process is expected shortly as identified component and hardware improvements are implemented and process experience is gained!

Prospects: Advanced LAPPD Development

Application specific requirements are motivating further LAPPD development in the following key areas:

ALD-GCA-MCPs with Enhanced Life Durability

Life durability of Incom ALD-GCA-MCPs is being further enhanced with development of a custom (C-14) glass that has virtually no alkali elements. Dark counts achieved are 10-25 X Lower (0.025-0.040 vs. 0.25-1.0) compared to conventional MCPS, further improving signal to noise (S/N).

GEN II Ceramic Package LAPPDTM

A second generation LAPPD with a ceramic body allows capacitive coupling of detector signals through the ceramic, to strips or pads on the outside. This novel design will allow fabrication of a generic detector tile, enabling end users the option of specifying the design of the signal output.

ALD-GCA-MCPs with reduced, near-zero TCR,

Allowing their use over very wide temperature ranges. Three process variables are being studied to evaluate their impact on TCR ; 1) Film thickness, 2) ALD metal chemistry and 3) ALD nanocomposite nanostructure.

Funding & Personnel Acknowledgements:

DOE, NASA, and NGA Contracts

- DOE, DE-SC0009717 "LAPPD Commercialization Fully Integrated Sealed Detector Devices"
- DOE, DE-SC0011262 Phase II "Further Development of Large-Area Micro-channel Plates for a Broad Range of Commercial Applications"
- DOE, DESCO015267, Development of Gen-II LAPPD[™] Systems For Nuclear Physics Experiments
- NASA: NNX15CG22P Curved Microchannel Plates for Space Flight Mass Spectrometers
- NGA-IV, NGA-V Next Generation Neutron Imager
- DOE, DESCO015729, Resistive coatings for high-performance, low-background MCPs operating across broad temperature ranges and at cryogenic temperatures
- DOE, DE-SC0009717 Phase IIA LAPPD Commercialization Fully Integrated Sealed Detector Devices

DOE Personnel: Dr. Alan L. Stone, Dr. Helmut Marsiske, Dr. Manouchehr Farkhondeh, Dr. Peter Kim, Carl C. Hebron, Dr. Kenneth R. Marken Jr, Dr. Manny Oliver, and many others.

NGA Personnel: Shawn Usman, Dr. Thomas J. Johnson, Dr. John Learned, Andrew Druetzler