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Motivation: Traditional PMT & MCP-PMT

@a \

/
Traditional PMTs mv\\/ s
= Successful technology over decades MCP-PMT
= Sensitive to single photons = Compact structure
= Good Quantum efficiency " Tens of picosecond level time

resolution
= Rather fast: several hundred ps time

resolution
= But...
— Limited position resolution
— Not suitable to high B-field
.\ ==large-area PMTs are still bulky

=  Micron-level position resolution
= Good B-field performance
=  But..
— Few venders
— High cost
— Limited size area Slide 3



Large Area Picosecond PhotoDetector (LAPPD)

= To address the limitations of commercial MCP-PMTs, the LAPPD project
reinvents photodetectors using transformational technologies.

= Goals: large-area (20 cm x 20 cm), picosecond-timing, low-cost

= Applications: picosecond timing on large-area
v" High energy physics: optical TPC, TOF, RICH
v' Medical imaging: PET scanner, X-ray imaging devices

v' National security: Detection of neutron and radioactive materials
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\
Large Area Picosecond PhotoDetector (LAPPD)

= LAPPD Status:
— Success with MCPs, waveform sampling ASIC, large-area photocathodes
— Success with the early R&D using a demountable detector *  *B. Adams, et al., Nucl.

) . Instru. Meth. A, 795 (2015),
— Incom, Inc. is commercializing the LAPPD detectors. 1-11

= Argonne focus:
— Thermal-pressure seal

feed THE UNIVERSITY OF

</ CHICAGO

Solder seal in situ
Anode and PSEC electronics

— Production of glass-body,6 cm .

-
! Bright Ideas in Fiber Optics

small area photodetectors.

Commercialization
Large Area

Glass packaging in transfer system

S Small Area
ALD MCP PSEC4 8” PC

Thermal-pressur
Successful ~ Successful ~ Successful Seal, successful @ Argon ne o
NATIONAL LABORATORY
2009 2013 2014 2015 2016

| LAPPD started I I I

N
\

>10 functional devices within 2 years
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\
\ Goals of Argonne MCP photodetector program

= Demonstrate the feasibility of the production of glass body MCP
photodetectors

= Produce the first functional devices and provide them to the community
for evaluation and incorporation into experiments

=  Support the industry for commercialization of large-area devices, ALD,
glass package, thermal pressure seal, testing...

= Provide a flexible platform for further R&D efforts (high B-field
application, cryogenic application, VUV response, thermal neutron
detection...)
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N
Argonne MCP photodetector program

* New techniques

- New glass substrates provided by
INCOM. Inc.

— ALD functionalization developed by
ANL-ES (licensed to INCOM.)

— All-glass hermetic packaging with
thermal-pressure seal (leads to lower
cost)

6 cm x 6 cm, all-glass body

ALD-MCP Photocathode Packaging
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Micro-channel plate by Atomic Layer Deposition

=  Conventional MCP:

Conventional route ALD route — Pb-glass provides pores

— Pb-glass provides resistive layer

Lead silicate Glass Borosilicate Glass
(a) (b)

— Pb-Oxide emissive layer

QQQ ODD = ALD-MCP:

O C> — New glass substrate from Incom.

Q Q D C> — Resistive/emissive layers by ALD

O v — Price reduced. Freedom to tune
Nesistiveloyer SEE bayer capabilities (high-rate, cryogenic

applications)

Electrode end spoiling
ALD SEE
coating

,‘ ‘ Pore glass
' . wall
_— . ‘r‘—_) ALD Resistive coating

ALD = Atomic Layer Deposition
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Photocathode development

Commercial Burle facility X-ray study to enhance QF

Improving QE;
study VUV
photocathode

*

Jan. 2011 Jan. 2012 May. 2013 May. 2015 Recent

7” photocathode ‘ 20% QE ‘

22% QE-._

. .
400 500
Wavelength (nm)

6 cm sealed tube 13% QE, goal is 20%

Position X / cm
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Small Single Tube Processing System (SmSTPS)

= The goal is to bring everything together and make a sealed device

= Unique features:

—  Vacuum transfer system : external magnetic arm

— Each process is done in its own chamber: very flexible for R&D

—  Thermo-pressure indium seal using hydraulic driven platens : demonstrated for large-

area (20 cm x 20 cm tiles);

-  Effusion cells for bialkali photocathode deposition: efficient method for mass production

= Serves as a flexible platform for R&D needs to address new requirements

MCP Scrubbing System

Control Gate valve 1
Arm #1

2.
:j - o
W
i

Load-Lock System

Gate valve 3

Deposition system
Control & Control

Arm #2 Sealing system Arm #3
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ANL 6 cm x 6 cm photodetector

= A glass bottom plate with stripline anode readout

= Aglass side wall that is glass-frit bonded to the bottom plate
= A pair of MCPs (20um pore) separated by a grid spacer.

= Three glass grid spacers.

= Aglass top window with a bialkali (K, Cs) photocathode.

= Anindium gasket between the top window and the sidewall.

Top Window
Photocathode

Nichrome border

Grid spacer #1

Top MCP
Grid spacer #2
Bottom MCP
Indium seal
Grid spacer #3
Side wall

Anode strip
Bottom window

Photocathode

o R > Grid spacer
I/l/l//l/l/l///I/I//l/l/l /I/l MCPl'tOp
y 1 MCP,-bottom
MCP,-top
\ \\\\\\\\\\\\\ \\ \\\ \\\\\\\\\\ \\\\ MCPZ—bottom
s I I s O | Anode strip

Signal ground

J. Wang, et al., Nucl. Instru. Meth. A, 804 (2015), 84 - 93
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Design improvement

Internal resistor biased design (original LAPPD design): grid
spacers are resistively coated

— No direct way to measure QE in sealed tube

— Need fine matching between component resistances

— Can’t optimize each internal component

Independently biased design (IBD-1): grid spacers are insulators

— Performances significantly improved after HV optimization : 65 ps -> 35 ps

— This new biasing design in glass-body has filed a patent

Photo-

cathode =

ot ]

ALD-

Q\ WANE

Version-0 design ALD-coated
grid spacer

\ 1
Vo

Wj

N

E5

-HV

Anode

s Ground

IBD-1 design Grid spacer
\ ?
v
\ El o
: =
A\ S
E5Anode
Ground
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Tube processing

hydraulic driven platens MCP & Resistive Grid Spacer Stack

Getter strips '

-

Sealed tube

Tile base

Tube processing is challenging
- Baking & scrubbing

-  Getter activation
- Photocathode deposition

- Thermo-pressure indium seal
Solved problems and achieved a reliable seal
Current status: 10710 Torr, one tube / 2 weeks

Production rate can be improved .
Indium gasket
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Status of the tube production

The 1st production run began in 07/2014 and concluded in 12/2014

- Addressed many issues (baking and scrubbing, sealing, outgassing control...)

- Produced 6 working devices, 3 long-lived (>1 year).

—  Discovered limitations of the first design: no HV access to the internal components
The 2nd production run began in 06/2015 and concluded in 12/2015

- Improved design: allows HV optimization for each component

—  Produced 10 detectors with a 100% sealing yield and 90% production yield.

The 3rd production run has just started: more working detectors

Now on track of providing photodetectors to the community.

Sealing trials | Working detectors
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Test facilities

Phosphor screen chamber for MCP test Photodetector laser test stand

Cryogenic test setup
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Blue laser test facility

Dark box #2

Hamamatsu PLP-10 pulsed blue laser
Wavelength: 405 nm
Pulse duration: FWHM =70 ps (o = 30ps)

Frequency: 2 Hz—10 MHz
Beam size: ~1 mm
Start signal: laser synchronization pulse

Translation stage: um precision
Readout: Programmable Oscilloscope

Continuous
Splitter  filter wheel

Readout
board

405 nm
Laser diode

Discrete  Collimator
filter wheels

Dark box #1 Planacon

Dark box #2
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Key performances

QE Spectra response

QE =13.2%
@ 370 nm
w0 0
Wavelength /nm
Filtered signals
S
£
0.5ns g
(@]

rise time

. Filtered

Y Position / cm

Amplitude [dB]

Red: signal

Blue: noise

P T S NS AR
1000 2000

v b by 1 ix10
3000 4000 5000

Frequency [Hz]

QE=13%

15.5%
maximum

Signal bandwidth
up tol.3 GHz
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Key performances

Gain > 107

Ore "~ 35 ps
for SPE,
including
Laser jitter

Orrs ~ 20 ps

Gain distribution

—— All pulses including pedestal

Pulses with quality cut

1 3x107

Gain VS HV

—a— Tube44
—®  Tubed5

| Tubed7?
—wv— Tube48
4 Tube49
» Tube50
4 Tube54

Gain VS HV,p

constantl 118.3+ 3.6
meani 6018 + 1.1
sigmal 3596+ 0.89

constant2 49.13 + 1.48
mean2 5877+ 1.0

sigma2  95.68 + 2.28

alty ) RV,
-5000 -4500

AT [ps]

Constant 336.8+ 8.1
Mean 24.98 + 0.01

Sigma  0.4736 + 0.0099

oc<l1lmm
for SPE

P T S T

28 30 32
X position [mm]
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Key performances

Charge distribution at 1.1 <N* >

— 387.5 Hz;’cm2
— 3.9 kHz.’cm2
—— 38.7 kHz/cm”

— 387.5 kHz/cm’
— 1.94 MHz/cm”

— 3.87 MHz/cm”

iy — 7.75 MHz/cm’

| — 19.38 MHziem”
-~ 38.87 MHz/cm’

i\

i
10

Loao 1
14 16
Charge [pC]

1L
12

The spectrum shifts to left with the
increase of the beam flux

Rate capability was recently measured with a pulsed laser
= Beam size is diffused: o, =0, =2.0 mm, A*~ 0.5 cm?
HV = 2800 V, without pre-amplifier

Charge distribution at 4.2 <N* >

T |||||I'I'| T 111

T IIIII|T| T IIIIIIII

|.1 II||I|T| 1 Illllll[

— 1.5 kHz/cm®
— 15.5 kHz.’cm2

—— 155 kHz/em®
— 1.5 MHz/cm’

—— 7.7 MHz/cm®
15,5 MHz/cm®
—— 31.0 MHz/cm’
—— 77.5 MHz/cm”
— 155.0 MHz/cm”

i PRI R
40 50 60

Charge [pC]

See a fast drop between
155 KHz/cm? and 1.5 MHz/cm?
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Key performances

= Rate capability was recently measured with a pulsed laser
= Beam size is diffused: o, =0, =2.0 mm, A*~ 0.5 cm?
= HV=2800V, without pre-amplifier

Number of electrons VS flux Time resolution VS flux

10 106 10’
Flux [Hz/cm?] Flux [Hz/cm?]

o
o_‘
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Comparison to commercial products

MCP-PMT HPK6 BINP8 HPK10 Burle25 | ANL6cm
R3809U-50-11X | N4428 R3809U-50-25X | 85011-501 tube
PMT size(mm) 45 30.5 52 71x71 85x76
Effective size(mm) 11 18 25 50x50 60x60
Channel diameter(um) 6 8 10 25 20
Length-diameter ratio 40 40 43 40 60
Max. H.V. (V) 3600 3200 3600 2500 2900
photo-cathode multi-alkali | multi-alkali | multi-alkali | bi-alkali | Bi-alkali ) , )
Q.E.(%) (»=408nm) 26 18 26 24 13 O e " % T0 m
120 4 ; .
® = HPK6 B Tube4d4 |:
“ _ o BINPS e Tubeds|:
100 - é : = HPK 10 A Tube49
e ® 4 )E ® Burle25 Tube50
¢ ! 25 um T < Tubest |’
" 80 I I, 1&* ’ > Tube52
By Nagoya & v 2 8a ¢ TubeS3:
. . 2 60 i.rw 4-‘ 5 A
University £ . ?k* | rgonne
~ o
40 i [ ]
10 M | B eneiimealdetss | 000 b :
20 ? - e
Single photo 1o TTS ewel i
0 ; : —— | ———— 7 T
10 10° 10°
Gain 107 0 0 107 108

Gain
= Pore size is an important parameter to obtain ultimate time resolution

= Estimated by subtracting the laser jitter, the Transit Time Spread (TTS) is close to 20 ps

S (need to be confirmed by a faster laser) Slide 21



Detector optimization

Al photocathode

Stainless steel

HV shim

Spacer

Screw

Insulating post

Anode PCB (0.8 mm)

MCP

Anode strip: 50 ohm

(4 mm width + 2 mm
interval)

Test chamber

The internal MCP/spacer stack can be
assembled in arbitrary configuration

Allow to optimize the detector design
without building a lot of sealed tubes

To do: improvement on timing and B-
field performance

Allow to study other ideas: neutron
detection, x-ray detection...
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Future development path

Others: SoLID, BELLE |l

= High QE over 20%
= Geometry optimization
= Pad readout design

Feedback

from users helps to
improve

the design

TARDIS

EIC: Electron lon Collider
ANNIE: The Accelerator Neutrino Neutron Interaction Experiment
s TARDIS: Timing and Advanced Reconstruction Done In Scintillator slide 23



Summary

The Argonne MCP photodetector program has been successful, benefiting
from advances in different disciplines.

Completed >13 working Photodetectors; achieved 100% sealing yield
Gain > 107;

Time resolution including the laser jitter: o, ~ 35 ps;

Position resolution along the anode strip: <1 mm

Rate capability > 1 MHz/cm? for single photoelectrons

The Small Tube Processing System is an ideal R&D platform for addressing
new requirements and studying new ideas (VUV photocathode, cryogenic
application, thermal neutron detection...).

On track of providing photodetectors to the community for evaluation and
testing: ANNIE, TARDIS, Proto-DUNE, EIC, BELLE II...

You are very welcome to discuss with us about your requirements and
great ideas.
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\ Performance of ALD-MCP

= 20 um pore, 60:1 L/d ALD MCP pair.
= Uniformity was measured for a 20cm x 20cm MCP pair with MgO Secondary
Emission Layer.

= Average gain ~ 7 x 10°
= Map shows <10% MCP gain variation

Average gain image “map”

Relative gain

Oum pore, 60:1 L/d ALD

800
Distance (pixels)

0 200 400 60 1200 1400 1600
Q_ i Slide 27




QE improvement

Goals: goal 20%

20%
18% T~

15%

Il Average QE

10% -

Good
uniformity

Photocathode QE

[ 1 5%

<+10% QE~20 % QE >30%
. . before process after process
non-uniformity optimization optimization

0% -

45 50 55 60

Understanding the issues: T N
v

v
v
v
v

Anti-reflection layer is missing; plasma generator under repair)
Halogen lamp heater not uniform; need a rotation stage

MCP outgas and getter material activation may contaminate the chamber
Cooling time is too long

Enhance light collection by means of internal reflective surface coating
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Datasheet

= We use the pulsed blue
laser (405 nm) facility to
test and characterize the 6
cm tubes.

=  Standard tests are
performed for each tube

- QE spectrum response

Argonne

High Energy Physics Division

6 cm x 6cm Photodetector Data Sheet
Photodetector Tube No.: # 44
Mfg Date: Jun. 10, 2015

NATIONAL LABORATORY

DESCRIPTION

Window Material

Borosilicate glass

Window Mask

NiCr

Photocathode Type

Bialkali

Multiplier Structure

MCP chevron (2), 20 um pore, 60:1 L:D ratio

Stack Structure

Independently Biased Design (IBD)

Anode Structure

0.47 cm sliver strip line, 0.23 cm interval

Active Area

6cmx6cm

Package open-area-ratio

65 %

CHARACTERISTICS

QE uniformity scan
Overall uniformity scan
Gain VS HV

Time resolution VS HV
Position resolution

Each tube will be sent out

to the users with a detailed
datasheet

Parameter Min. Typ. Max. Unit
Overall High Voltage -2900 3100 v
Voltage Divider Current 230 - A
Spectral Response 300 - G600 nm
Photocathode -
Quantum Efficiency 6% @350nm 7.0%@380nm
Gain at -2900 V 1x 10 -
Rise Time 0.62 14 ns
. Fall Time 1.85 22 ns
Time Response 7
ILR.F. (o) / LR.F. (FWHM) 35/90 - ps
TT.S. (0 /T.T.S (FWHM) 18757 - ps
) Differential Time resolution 13 (Single-PE) | - ps
Spatial Response | (T)
Pasition Resolution (o) 0.7 (Multi-PE) 1.3 (Single-PE) [ mm
CONNECTION SCHEMATIC
R - 2 MQ
Photocathode R " =5 MQ
R = 1.5MQ
b MCP,-top _
L e VIR TSI NT e MCP,-bottarn R_=5MQ
I ALTTLITELLR R RN MCP;-top R_=2MQ
c, o Ry kW W T W . W W . . W MCP,-bottom
i R =100 0
C, Ray i—| s B s I s N s O s | l—i_ Anode strip Rg =24 MQ
T 1— Signal ground MCP1
Ry % R =25MQ
MCP2
= C4: 1 uF

Dash line: not installed yet
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Cryogenic detector

= Structural integrity, mainly the indium seal and frit bond, cause some worry
— Work already done: sealed and devices ‘dunked’ into liquid nitrogen
- MCP photodetector with glass package DO survive in cryogenic environment

= Detector window: quartz or MgF, with VUV photocathode (Csl) for direct VUV
detection

= Cryogenic MCP
— Current MCP resistive coating will lose its conductivity at cryogenic temperature
- Working on tuning the ALD recipe to bring down resistivity

— Also need to verify the ALD secondary emission layer properties at cryogenic
temperature
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Detector optimization

Photocathode

HV1 /*l

o

HV2 g
MCP / Not to scale!
HV3 | £ <
HV4
HV5 v

Anode

t*

Aluminum lon protection layer
significantly suppresses the ion
feedback, but lose 50% of electrons.

Improve time resolution

5
Done g o
g =00
HV S oo
—ng.
optimization >3 150!
200 Mer s

p=2ins
FYWHRM = 1.4 ns

35000 40000 45000 50000
Time [ps]

Suppress Back scattering

L)

Next step
T
Geometrical

modification

Near future
|
Ion protection

layer

8%
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