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Motivation: Traditional PMT & MCP-PMT

Traditional PMTs

 Successful technology over decades

 Sensitive to single photons

 Good Quantum efficiency

 Rather fast: several hundred ps time 
resolution

 But…

– Limited position resolution

– Not suitable to high B-field

– large-area PMTs are still bulky
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MCP-PMT

 Compact structure

 Tens of picosecond level time 
resolution

 Micron-level position resolution

 Good B-field performance

 But…

– Few venders

– High cost

– Limited size area



Large Area Picosecond PhotoDetector (LAPPD)
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 To address the limitations of commercial MCP-PMTs, the LAPPD project 
reinvents photodetectors using transformational technologies. 

 Goals:   large-area (20 cm × 20 cm), picosecond-timing, low-cost

 Applications: picosecond timing on large-area

 High energy physics: optical TPC, TOF, RICH

 Medical imaging: PET scanner, X-ray imaging devices

 National security: Detection of neutron and radioactive materials

PMT LAPPD



Large Area Picosecond PhotoDetector (LAPPD)
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 LAPPD Status: 

− Success with MCPs, waveform sampling ASIC,  large-area photocathodes

− Success with the early R&D using a demountable detector *

− Incom, Inc. is commercializing  the LAPPD detectors. 

 Argonne focus: 

− Thermal-pressure seal

− Production of glass-body,6 cm

small area photodetectors.

Thermal-pressure 
Seal, successful @ANL

2015

>10 functional devices within 2 years 

LAPPD started

Successful Successful

Commercialization

Glass packaging in transfer system

2013 2014 2016

Solder seal in situ
Anode and PSEC electronics

8” PC

Successful

* B. Adams, et al., Nucl. 
Instru. Meth. A, 795 (2015), 
1 - 11



Goals of Argonne MCP photodetector program

 Demonstrate the feasibility of the production of  glass body MCP 
photodetectors

 Produce the first functional devices and provide them to the community  
for evaluation and incorporation into experiments 

 Support the industry for commercialization of large-area devices, ALD, 
glass package, thermal pressure seal, testing…

 Provide a flexible platform for further R&D efforts  (high B-field 
application, cryogenic application , VUV response, thermal neutron 
detection…)
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Argonne MCP photodetector program

• New techniques
− New glass substrates provided by 

INCOM. Inc.
− ALD functionalization developed by 

ANL-ES  (licensed to INCOM.)
− All-glass hermetic packaging  with 

thermal-pressure seal (leads to lower 
cost)

ALD-MCP Photocathode Packaging Testing

6 cm × 6 cm, all-glass body
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Micro-channel plate by Atomic Layer Deposition
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 Conventional MCP: 
– Pb-glass provides pores

– Pb-glass provides resistive layer

– Pb-Oxide emissive layer 

 ALD-MCP: 
– New glass substrate from Incom. 

– Resistive/emissive layers by ALD

– Price reduced. Freedom to tune 
capabilities (high-rate, cryogenic 
applications)

Conventional route ALD route

ALD = Atomic Layer Deposition



Photocathode development
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Jan. 2011 Jan. 2012 May. 2013 May. 2015

Commercial Burle facility
X-ray study to enhance QE

22% QE 30% QE

7” photocathode 20% QE

6 cm sealed tube 13% QE, goal is 20%

Improving QE;  
study VUV 
photocathode

Recent



Small Single Tube Processing System (SmSTPS)
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 The goal is to bring everything together and  make a sealed device

 Unique features: 

− Vacuum transfer system : external magnetic arm

− Each process is done in its own chamber: very flexible for R&D

− Thermo-pressure indium seal using hydraulic driven platens :  demonstrated for large-
area (20 cm × 20 cm tiles); 

− Effusion cells for bialkali photocathode deposition: efficient method for mass production

 Serves as a flexible platform for R&D needs to address new requirements



ANL 6 cm × 6 cm photodetector
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 A glass bottom plate with stripline anode readout

 A glass side wall that is glass-frit bonded to the bottom plate

 A pair of MCPs (20µm pore) separated by a grid spacer.

 Three glass grid spacers.

 A glass top window with a bialkali (K, Cs) photocathode. 

 An indium gasket between the top window and the sidewall.

J. Wang, et al., Nucl. Instru. Meth. A, 804 (2015), 84 - 93



Design improvement

 Internal resistor biased design (original LAPPD design):  grid 
spacers  are resistively coated

– No direct way to measure QE in sealed tube 

– Need fine matching between component resistances

– Can’t optimize each internal component

 Independently biased design (IBD-1): grid spacers are insulators
– Performances significantly improved after HV optimization：65 ps -> 35 ps

– This new biasing design in glass-body has filed a patent
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Tube processing
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 Tube processing is challenging
− Baking & scrubbing

− Getter activation

− Photocathode deposition

− Thermo-pressure indium seal

 Solved problems and achieved a reliable seal

 Current status: 10-10 Torr, one tube / 2 weeks

 Production rate can be improved

hydraulic driven platens
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Tile base

MCP & Resistive Grid Spacer Stack

Sealed tube

Completed tube

Getter strips

Indium gasket



Status of the tube production

 The 1st production run began in 07/2014 and concluded in 12/2014

− Addressed many issues (baking and scrubbing, sealing, outgassing control…)

− Produced 6 working  devices, 3 long-lived (>1 year).

− Discovered limitations of the first design: no HV access to the internal components

 The 2nd production run began in 06/2015 and concluded in 12/2015

− Improved design: allows HV optimization for each component

− Produced 10 detectors with a 100% sealing yield and 90% production yield.

 The 3rd production run has just started: more working detectors

 Now on track of providing photodetectors to the community. 
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Sealing trials Working detectors



Test facilities
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Phosphor screen chamber for MCP test

Photo cathode test stand

Photodetector laser test stand

Cryogenic test setup



Blue laser test facility

16

 Hamamatsu PLP-10 pulsed blue laser 

 Wavelength: 405 nm

 Pulse duration: FWHM = 70 ps (𝛔 = 30ps)

 Frequency: 2 Hz – 10 MHz

 Beam size: ~1 mm

 Start signal: laser synchronization pulse 

 Translation stage: um precision 

 Readout: Programmable Oscilloscope

 Data analysis: Waveform sampling, offline

Dark box #2

Readout
board40 Gs/s scope 



Key performances
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QE Spectra response

QE = 13.2% 
@ 370 nm QE = 13 %

15.5% 
maximum

Filtered signals

0.5 ns 
rise time

Signal bandwidth
up to1.3 GHz

Filtered

QE 2D map

Frequency components 



Key performances
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σIRF ~ 35 ps
for SPE, 
including 
Laser jitter

Timing distributions

σ < 1 mm
for SPE

σTTS ~ 20 ps

Gain distribution

Gain > 107 Gain VS HVMCPSPE
1073×107

Position resolution

Gain VS HV



Key performances
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Charge distribution at 1.1 <N*pe> Charge distribution at 4.2 <N*pe>

The spectrum shifts to left with the 
increase of the beam flux

See a fast drop between 
155 KHz/cm2 and 1.5 MHz/cm2 

Valid pulses 

 Rate capability was recently measured with a pulsed laser

 Beam size is diffused:  σx = σy = 2.0 mm, A* ~ 0.5 cm2

 HV = 2800 V, without pre-amplifier 



Key performances
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Number of electrons VS flux Time resolution VS flux

1MHz/cm2
1MHz/cm2

 Rate capability was recently measured with a pulsed laser

 Beam size is diffused:  σx = σy = 2.0 mm, A* ~ 0.5 cm2

 HV = 2800 V, without pre-amplifier 



Comparison to commercial products
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By Nagoya 
University By Argonne

 Pore size is an important parameter to obtain ultimate time resolution

 Estimated by subtracting the laser jitter, the Transit Time Spread (TTS) is close to 20 ps
(need to be confirmed by a faster laser)

TTS level

20 μm

107 107 108

10 μm

25 μm

8 μm

6 μm

. . . .

2 2 2~
I R F T TMCP laser

  



Detector optimization
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 Test chamber

– The internal MCP/spacer stack can be 
assembled in arbitrary configuration

– Allow to optimize the detector design 
without building a lot of sealed tubes

– To do: improvement on timing and B-
field performance 

– Allow to study other ideas: neutron 
detection, x-ray detection…



Future development path
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EIC: Electron Ion Collider
ANNIE: The Accelerator  Neutrino Neutron Interaction Experiment
TARDIS: Timing and Advanced Reconstruction Done In Scintillator

Today

Feedback
from users helps to 
improve
the design

TARDIS

Others: SoLID, BELLE II…

ANNIE

EIC

 High QE over 20%

 Geometry optimization 

 Pad readout design

 …



Summary

 The Argonne MCP photodetector program has been successful, benefiting 
from advances in different disciplines. 

− Completed >13 working Photodetectors; achieved 100% sealing yield

− Gain > 107;

− Time resolution including the laser jitter: σI.R.F ~ 35 ps;

− Position resolution  along the anode strip:  < 1 mm

− Rate capability > 1 MHz/cm2 for single photoelectrons

 The Small Tube Processing System is an ideal R&D platform for addressing 
new requirements and studying new ideas (VUV photocathode, cryogenic 
application, thermal neutron detection…).

 On track of providing photodetectors to the community for evaluation and 
testing: ANNIE, TARDIS, Proto-DUNE, EIC, BELLE II…

 You are very welcome to discuss with us about your requirements and 
great ideas.
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Backup
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Performance of ALD-MCP
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 Transformative Technology

 Worlds largest MCPs

 Competitive gain

 Competitive life times

 Lower background, dark 
current

 Mechanically robust

Average gain image “map”

20μm pore, 60:1 L/d ALD 
MCP pair.

 20 μm pore, 60:1 L/d  ALD MCP pair.

 Uniformity was measured for a 20cm x 20cm MCP pair with MgO Secondary 
Emission Layer.

 Average gain ~ 7 × 106

 Map shows <10% MCP gain variation
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QE improvement

 Understanding the issues: 

 Anti-reflection layer is missing; plasma generator under repair) 

 Halogen lamp heater not uniform; need a rotation stage

 MCP outgas and getter material activation may contaminate the chamber

 Cooling time is too long

 Enhance light collection by means of internal reflective surface coating
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Goals: 

18%

goal 20%



Datasheet

 We use the pulsed blue 
laser (405 nm) facility to 
test and characterize the 6 
cm tubes. 

 Standard tests are 
performed for each tube  
− QE spectrum response

− QE uniformity scan

− Overall uniformity scan

− Gain VS HV

− Time resolution VS HV

− Position resolution

 Each tube will be sent out 
to the users with a detailed 
datasheet
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Cryogenic detector 

 Structural integrity, mainly the indium seal and frit bond, cause some worry

– Work already done: sealed and devices ‘dunked’ into liquid nitrogen

 MCP photodetector with glass package DO survive in cryogenic environment

 Detector window: quartz or MgF2 with VUV photocathode (CsI) for direct VUV 
detection

 Cryogenic MCP

– Current MCP resistive coating will lose its conductivity at cryogenic temperature

 Working on tuning the ALD recipe to bring down resistivity

 Also need to verify the ALD secondary emission layer properties at cryogenic 
temperature
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Detector optimization
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Aluminum Ion protection layer 
significantly suppresses the ion 
feedback, but lose 50% of electrons. 


