

maarten.vandijk@physics.ox.ac.uk

The TORCH project Testbeam results & current status

Workshop on Picosecond Timing Detectors Kansas City, Missouri, United States September 15, 2016

M.W.U. van Dijk

M. J. Charles, R. Forty,

TORCH

- TORCH: Time Of internally Reflected CHerenkov light
 - DIRC-like detector
- Proposed as upgrade for LHCb
 - TORCH has the potential to complement the existing PID system (RICH1, RICH2) in the low momentum regime (2-10 GeV/c)
- Principle of operation
 - High precision timing of particle at known momentum provides PID
 - ΔTOF(π-K) = 37.5ps at 10 GeV/c
 - Target (three sigma separation) is ~15ps / track

maarten.vandijk@physics.ox.ac.uk

TORCH – Testbeam results & status **Picosecond Timing Workshop** September 15-18, 2016

TORCH

- Cherenkov light generated in radiator is transported to periphery by total internal reflection
- Measure angles θ_z and θ_x to reconstruct photon trajectory 1 mrad precision

Quartz plate

Photodetectors for TORCH

- Single photon time resolution of about 70ps required
- Requirement met by MCP-PMT
- TORCH design calls for 128×8 pixels on a 53×53mm² area
 - Pixel size set by requiring 1 mrad precision on measured angles θ_z and θ_x
- Required performance
 - ~50ps for electronics + MCP-PMT
 - ~50ps for effects of pixel size and reconstruction

> T.M. Conneely et al., JINST **10** C05003 (2015)

MCP-PMT development

- Phase I
 - Circular prototype 25mm active diameter
 - Single channel MCP-PMT with extended lifetime
- Phase II
 - Circular prototype 40mm active diameter
 - 4×32 pixelated anode embedded in center
 - Resolution demonstrator
 - Introduces charge sharing
- Phase III
 - Square tube with 53×53mm² active area
 - 8×64 pixels with charge sharing
 - Prototypes expected to be delivered this fall

Lifetime testing

- Lifetime requirement set at 5C/cm² for Phase-I MCP-PMTs
- Have undergone tests at Photek
 - Phase-I equivalent MCP-PMT
- Tests have been verified at CERN
 - Phase-I MCP-PMT
 - Stabilized blue LED
- Tests successful
 - Gain drop deeper than expected
 - Recovered by increase of HV
 - Marginal loss in quantum efficiency (3.1 C/cm²)

Modular layout

- For application in LHCb a plane of about 5×6m² needs to be instrumented
- Not feasible to do this with a single plane of quartz
- Uses modules of 66×250cm²
- Reflections off vertical sides give ambiguities in reconstruction
- Referred to as pattern folding

Different X and Y scales

Compressed view in X

Pattern folding

- Cherenkov cone results in hyperbola-like pattern
- Reflections off module edges result in folding of this pattern
- Chromatic dispersion spreads line into band
- Pattern shown here for full TORCH module, but also very prevalent in testbeam

TORCH electronics

- Electronics consist of combination of NINO and HPTDC ASICs
- NINO is discriminator with TOT information
- HPTDC timestamps leading / falling edge of NINO pulse
 - 100ps bins
- NINO introduces time walk
 - To be addressed with calibration and further analysis
- 128ch board in development

Testbeam setup

- Quartz radiator (12×35×1cm³) with matching focusing block
- Single Phase-II MCP-PMT in center of focusing plane (4×32 pixels)
- Testbeam taken at CERN PS / T9
- Trigger defined by two 8×8mm² scintillators spaced 11m apart
- Timing taken from two borosilicate bars with single-channel MCP-PMT

maarten.vandijk@physics.ox.ac.uk

TORCH – Testbeam results & status **Picosecond Timing Workshop** September 15-18, 2016

T1/T2: scintillator + timing stations C1/C2: threshold Cherenkov counters ($CO_2 @ 2.5$ bars)

Cluster analysis

- NINO + HPTDC gives charge in avalanche plus leading timestamp
- Information extracted per cluster
 - Charge weighted position
 - Timestamps also charge weighted
 - Lower resolution on low-charge hits
- Information available from within cluster
 - Shape of avalanche extracted from hit position and charge
 - Time of all hits in cluster should be identical – all come from same avalanche
 - Gives possibility to do time walk calibration from data

Particle selection

- Goal is to measure time resolution of TORCH – but different particle species overlay in time / space
- Mixed particle beam (positive, 5 GeV/c)
 - Protons / pions
 - Cherenkov counters not fully efficient at 5 GeV/c
 - Difference in time of flight about 600ps
- Measured by injecting T1 and T2 timing signals into TORCH electronics
 - Verified with commercial system (ORTEC)
- Additionally, exact TOF difference also used for calibrating momentum

Horizontal detected position (mm)

Cluster hitmap

- Charge weighting applied for clusters
- Particle selection from TOF
- Hitmap splits into two contributions
 - Pion (solid line)
 - Proton (dashed line)

Vertical detected position (mm) 0 5 0

-5

-10

Difference in Cherenkov angle clearly visible

Time walk correction

- Time difference within cluster between neighbouring pixels is mapped as a function of charge in both
- Resulting shape $\Delta t(Q_1, Q_2)$ is fitted
- Shape of $\Delta t(Q_1)$ and $\Delta t(Q_2)$ is extracted
- Only the shape of the time walk is corrected for – still channel to channel offset
- Map out cumulative offset between channels

Timing results

- Displayed as time projection per single (vertical) column
- Predict expected photon positions
 - Superimpose predictions and data
- Reflections occur twice – once for each vertical side

Timing results

Time resolution

Pions only T2 reference 1m flight path

- Predicted photon arrival time
 - Full reconstruction based on:
 - Track position
 - Particle momentum (measured from TOF difference)
 - Particle selection
- Time resolution estimates
 - Gaussian fit of main peak
- Time resolution (for now) dominated by time reference
 - Beam defined by small scintillators
 - No tracking
 - 100ps bins in HPTDC

Col. #	Mean [ps]	Sigma [ps]
0	-0.6	117.2
1	4.7	124.9
2	-0.3	126.9
3	-3.0	117.7

Perspectives

- New testbeam setup
 - Setup has been adapted to accommodate 32×32 Planacon
 - Timing from individual stations has been improved significantly
 - Completed results looking good so far!

- New optics ordered (66×125×1cm³)
 - Test outside LHCb acceptance under discussion

Conclusions

- TORCH is a solid Cherenkov detector proposed for the PID system of LHCb, using time of flight, in the region 2-10 GeV/c
- Results on required specifications very satisfactory
 - Lab measurements complementing testbeam
 - Performance has been shown to be very good 117ps time resolution
 - Significant improvements expected from recently finished testbeam
- TORCH has a bright future
 - New optics are in the process of being ordered
 - Testing outside of LHCb acceptance is under discussion
 - Delivery of Phase-III MCP-PMTs is very close
 - New generation of electronics being designed

maarten.vandijk@physics.ox.ac.uk

The support of the European Research Council in funding this work is gratefully acknowledged: ERC-2011-ADG proposal 299175, http://cordis.europa.eu/projects/rcn/103813_en.html maarten.vandijk@physics.ox.ac.uk

TORCH – Testbeam results & status **Picosecond Timing Workshop** September 15-18, 2016

Backup slides

01-Jan-15

Experimental

artifact

30-Jun-15

TORCH – Testbeam results & status **Picosecond Timing Workshop** September 15-18, 2016

Lifetime testing

- Quantum efficiency of MCP-PMTs monitored over length of lifetime tests
- Tests performed (so far) up to 3.09 C/cm²

MCP gain/anode current ratio

27-Dec-15

Date

24-Jun-16

Time walk

- First attempt: Manual calibration
 - Measured on a subset of "representative" channels
 - Not successful large channel to channel differences
- Second attempt: measure from testbeam data
 - Charge sharing between pixels
 - Map out time differences between neighbouring channels as a function of charge
 - Parameterize 2D function and fit
 - Reconstitute fit parameters into calibration for individual channels

Further applications

- New idea for application of TORCH in LHCb
 - TORCH would be placed in front of LHCB calorimeter
 - Use lead plate in front (X₀≈6mm) for conversion of high energy photons
 - Time tagging high energy photons helps resolve pile-up
 - Limited by spatial resolution of calorimeter (replaces tracking)
- Assessed with simulation
 - Time resolution is sufficient to be of great help in resolving pile-up
 - However, a large part of the PID capability is lost

Pion momentum (GeV/c)

Perspectives

- A design to use existing quartz from BaBar is under investigation
- Quartz for a new, larger prototype is being ordered
 - Will be half the size of a full-scale TORCH module: 66×125×1cm³
- Test has been proposed to put this TORCH module outside LHCb acceptance
 - Would still have tracking for low energy particles
 - Testbench for full application
- Full PID Algorithm under preparation

