GasToF: Pico-second Gas Čerenkov Time-of-Flight Detectors

Laurent Forthomme for K. Piotrzkowski (UCLouvain – CP³ Center)

Very fast introduction

One photoelectron principle and multi-anode design

First results and next steps

ps timing workshop

Kansas City

$$z = c (t_1 - t_2)/2$$

GasToF™ Concept

- Gas Čerenkov direct, very forward light propagation (no internal reflections) intrinsically very fast, excellent resolutions with single photons
- Very simple "optics" thanks to small chromatic dispersion; light spectrum peaking at deep UV
- Robust and radiation hard (light reflected away by thin mirrors)
- Light detector (just thin walls) can be used within tracking
- Needs some space though, length...

GasToF: One photoelectron mode

- **GasToF** first, extremely fast (see extra slides), single anode prototypes had two problems in view of running them at (very) high luminosity LHC:
- 1. Lack of multiple proton hit capability;
- 2. Very high anode currents + lifetime issues

Solution: detector with (the fastest) 8x8 multi-anode MCP-PMT – with total signal of about 8 phe, and with up to ~0.5 phe per anode, on average.

• To increase lifetime, enhance UV part – use MgF₂ windows + photocathodes only sensitive in deep UV ('solar blind') – and eventually ALD treated MCPs.

Caveat: For multi-hit case the time measurement is feasible but there is no position sensitivity, so one cannot associate time to tracks

Example solution: Run together with pixel detectors of good (but inferior) time resolution

Multianode GasToF: Test beam

We continue GasToF development within R&D for CT-PPS

- First, we would like to test (understand) multi-channel, single-photon operation and performance, including the DAQ system based on the NINO+HPTDC chips
- A detector with a flat mirror was equipped with a Photonis XP85112 tube for the TB in August'15:

Photon Detector

10µm MCP-PMT

53 mm Square, 8x8 Anode

- Superior Magnetic Field Immunity
- Enhanced Timing Performance

Applications

- ✓ Specialized Medical Imaging
- Cherenkov RICH, TOF, TOP, DIRC
- High Energy Physics Detectors
- ✓ Homeland Security

Photocathode characteristics	Min	Тур	Max	Unit
Spectral range:	200		650	nm
Peak Quantum Efficiency at 380 nm*	18	22	14	%
Operating Characteristics	Min	Тур	Max	Unit
Overall Voltage for 10 ⁵ Gain *		FIG	2800	V
Total anode dark current @ 10 ⁵ gain *		2	10	nΑ
Spatial Uniformity		2:1		
Rise time**		0.5		ns
Pulse width**		0.7		ns
Transit time spread (σ _{tts})**		35	60	ps
Maximum Magnetic Field Operation		Ž		Т

XP85112

Typical spectral response

Simple optics with flat mirror

Equip existing GasToF prototype with new MCP-PMT

REMINDER: Old simulations with PHOTONIS 25 μm MCP-PMT (T. Pierzchala)

New GasToF

September 16, 2016

ps Workshop - K. Piotrzkowski

Multianode GasToF: Test beam '15

Main goal: to test GasToF
 operation with NINO boards +
 adapters

Problem: no proper shielding and mechanical support available at this stage

GasToF: Test beam '15 results

- All channels working but with high noise levels
- To understand it, runs were taken with different HV settings and discriminator levels
- No good data were found to make a precision time measurement – detailed studies in the lab needed...

New laser setup adapted for multichannel MCP-PMTs

GasToF

(mobile par rapport au faisceau laser)

Laser

photodétecteur

Photo: Dispositif utilisé en laboratoire lors des mesures

Maxime Renaud
Thomas Van den Schrieck

First lab tests: waveforms

First lab tests: « Poisson calibration »

Thomas Van den Schrieck

First lab tests: « cross-talk »

Thomas Van den Schrieck

GasToF: Summary

- First multi-anode GasToF, equipped with a 10 μ m pore XP85112 Photonis tube, has been built and is operational
- Our PiLas laser test lab setup has been adapted
- Very **first results** are coming, showing the expected performance but much more tests are needed...
- We need (very) badly support.... and collaboration!

Interested to join?

Extra slides

Forward proton trajectories @ LHC

HECTOR: JINST 2, P09005 (2007)

Thanks to very high energy and low scattering angles path length differences are very small for forward protons, below 100 μ m! It means that it starts affecting *z-by-timing* only for sub-picosecond measurements!

Picosecond ToF detectors @ LHC

Plan to run forward proton detectors at <u>nominal</u> luminosity – event rates are so high that triple accidental coincidence (an interesting event in central detector + two protons from single diffraction) becomes major background, therefore relatively, it rises quadratically with luminosity!

Use very fast ToF detectors to reduce it by matching *z-vertex* from central tracking with *z-by-timing* from proton arrival time difference: LHC vertex spread is \sim 50 mm \rightarrow to reduce significantly backgrounds one needs < 10ps time resolution (\rightarrow 2 mm *z-vertex* resolution)!

 $z = c (t_1 - t_2)/2$

Proposed fast (& small ~10 cm² cross-sections) timing detectors: Čerenkov radiators + fastest MCP-PMTs

Challenging conditions→ pushing MCP-PMT performances to limits:

- → High event rates, up to several MHz
- → Running MCP-PMTs at (above?) maximal anode currents
- → Large total collected anode charges (at least few C/cm²)

GasToF: Gas (C_4F_{10}) Čerenkov detector with very fast light pulse (< 1 ps spread!) \rightarrow resolution limited by TTS of MCP-PMTs and electronics

Gastof with 6 μm pore **MCP PMT**

Gas leak problem

Problem:

Small 11 mm cathode → use spherical mirror to focus light on MCP-PMT

HAMAMATSU

MICROCHANNEL PLATE-PHOTOMULTIPLIER TUBE (MCP-PMTs) R3809U-50 SERIES

Compact MCP-PMT Series Featuring Variety of Spectral Response with Fast Time Response

FEATURES

- High Speed Rise Time: 150ps T.T.S. (Transit Time Spread)¹): ≤ 25ps(FWHM)
- Low Noise
- Usef@lePh@patapde6.12mm@liameter

Compact Profile (Overall length: 70.2mm Outer diameter: 45.0mm)

GasToF @ CERN test beam

- Two short GasToF prototypes with HPK tubes and readout with 40 (80) GSa/s
 14 GHz BW scope (thanks to UTA and AFP!)
- Quartz windows were added to seal gas volume

Top view

120Gev pion, proton beam GasToF_2 Quartic_1 Trig_1 Veto GasToF_3 Quartic_2 Trig_2 4 meter

GasToF@TB: Published results

• Time difference between two GasToF detectors:

J. Liao

10 ps width corresponds to average **7 ps** detector resolution measured for signals > 4 photoelectrons

Published in NIM **A762** (2014) 77

... can also study this difference as a function of number of photoelectrons...

GasToF@TB: Published results

 Measure time difference width vs # photoelectrons

J. Liao

$$\sigma^2 = (\sigma_{ref})^2 + (\sigma_{1phe})^2 / N_{phe}$$

From linear fits to σ^2 vs $1/N_{phe}$ one can extract resolutions for 1 photoelectron signals!

Measured resolution for 1 phe signal is about 15 ps

(as expected from TTS)

Published in NIM **A762** (2014) 77

GasToF@TB: Published results

 Another measurement of time difference width vs # photoelectrons, with **PHOTEK** and HPK tubes

J. Liao

$$\sigma^2 = (\sigma_{ref})^2 + (\sigma_{1phe})^2 / N_{phe}$$

Measured PHOTEK PMT210 resolution for 1 phe signal is about 25 ps

(note different setup; it is expected < 15 ps for the previous one)

Published in NIM **A762** (2014) 77

ULTRA FAST PHOTOMULTIPLIERS

	PMT210	PMT212	PMT325	PMT340
Anode Size	10 mm	12 mm	25 mm	40 mm
Electron Gain	10 ⁶	10 ⁶	10 ⁷	10 ⁷
Peak/Valley	2:1	1.5:1	2:1	2:1
Dynamic Range cps	40,000	40,000	40,000	40,000
Pulse Rise Time	100 ps	100 ps	300 ps	500 ps
Pulse FWHM	170 ps	170 ps	800ps-1 ns	1 ns
Transit Time Jitter	30 ps	30 ps	100 ps	100 ps
MCP Pore Size	5/6	5/6	10/12	10/12

Received from PHOTEK two 3 μm pore MCP-PMTs...

...so fast that had to upgrade to yet faster scope...

Dedicated picosecond laser test setup was developed to characterize fastest MCP-PMTs from Photek and Hamamatsu – using Agilent scope with 8 GHz BW and 40 GSamples/s

PILxxx	wavelength (nm)	tolerance (nm)	spectral width (nm)	pulse width (ps)
PIL037	375	±10	< 7	< 60
PIL040	408	± 10	< 7	< 45
	i			FWHM

PiLas laser test setup runs up to 1 MHz repetition rate at 408 nm and using 8 GHz Agilent scope with 40 GSa/s

(and 150 ps for R 3809U-50)

Waveforms and anode charge distribution from Hamamatsu R 3809U-50

