WORKSHOP ON PICOSECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS, KANSAS CITY, SEPTEMBER 16, 2016

### DIRECT TESTS OF A PIXELATED MICROCHANNEL PLATE AS THE ACTIVE ELEMENT OF A SHOWER MAXIMUM DETECTOR

#### <u>Cristián H. Peña</u> California Institute of Technology





## OUTLINE

- Introduction
  - High luminosity particle colliders challenges
  - Precision timing as an option to overcome them
- MCP-based secondary emission calorimeter challenges
- Results using a pixelated MCP-base secondary emission calorimeter
  - Position resolution
  - Time resolution
- Summary and Conclusions



Standard Model of Elementary Particle



- One missing piece of the puzzle, the Higgs boson
- Higgs mechanism spontaneously breaks the electroweak symmetry  $\Rightarrow$  W and Z bosons become massive

12/12/15, 11:12 AN

- Recently discovered at the LHC,  $m_H = 125 \pm 0.24$  GeV
- Measured properties are compatible to that of SM Higgs.





## WHAT IS MISSING?

Unification of coupling constants @ M<sub>pl</sub>



Dark matter accounts for 27% of the total energy budget of the universe

Very crucial questions remain unanswered

Dark matter candidate





- The LHC and possible future colliders will play a key role in answering those questions
- In all cases high instantaneous luminosities (larger than 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>)
  - HL-LHC: aiming at 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Future collider: even higher in order to probe rare processes







## HIGH LUMINOSITY ENVIRONMENTS

## High Luminosity $\Rightarrow$ High pileup



Multiple pp collisions close to each other: deteriorate physics performance. <u>Up to 140 pileup interactions at the HL-LHC</u>

Cristián H. Peña, Caltech

6



## Many challenges come with high pileup:

- Jets from pileup could be associated with the main interaction
- Pileup particle merging with particles coming from main interaction
- Vertices could overlap in the longitudinal direction



HIGH LUMINOSITY ENVIRONMENTS

## Missing transverse energy is very important for many BSM physics searches



- Every pileup interaction contributes  $\sim 3 \text{ GeV}$  to the missing E<sub>T</sub> resolution
- At 140 pileup interactions, the missing  $E_T$  resolution due to pileup will be ~40 GeV

pileup particles significantly contribute to the missing  $E_T$  resolution

## HIGH LUMINOSITY ENVIRONMENTS

# Tracking based vertexing also starts to suffer at such high pileup conditions





A possible solution is to use precision timing

measure time stamp of a particle at the detector



Identify from what vertex it was produced





### I: PRECISION TIMING APPLICATIONS

Precision timing information could be use to identify pileup particles (pileup ID)



record charged particle, photon, and jet time stamps

## check time stamp consistency with primary vertex



Precision timing information could be used when clustering single hits in the calorimeter

outside clustering time window

II: single hit pileup ID

at 140 pileup, neutral particle contribute up to 100% of the energy in a 50 GeV jet



inside clustering time window



#### III: PRECISION TIMING APPLICATIONS

Precision timing could be used to reconstruct the primary vertex when only neutral particles are present

III: event level vertexing





## PRECISION TIMING GOALS

#### How precise does the timing measurement need to be?

- Particles travel at near the speed of light
- 1 cm is equivalent to ~33 ps
- To distinguish pileup interactions separated by 1 cm requires a time resolution of ~30 ps
- Typical collider beam-spots are ~10 cm  $\Rightarrow$  rejection factor of 10



## Multichannel Plate as the Active Element of a Shower Maximum Detector, Part I

## SECONDARY EMISSION CALORIMETER

Secondary emission calorimeters provide some intrinsic advantages:

- MCP are radiation hard
- No optical transparency issues
- No optical transport issues
- Intrinsically fast:
  - Signal formation and decay are fast (full pulse in a few ns)
  - Major advantage for future colliders (enables higher bunch crossing rate)



MCP example pulse: 2 ns pulse width MCP-BASED SECONDARY EMISSION CALORIMETER



MCP-BASED SECONDARY EMISSION CALORIMETER





## MCP DETECTORS





#### MCP signal pulses in this setup



MOST RELEVANT TIMING CONTRIBUTIONS

Different sources contribute to the time resolution





## REFERENCE TIMER

- Measure ~10 ps time-of-flight resolution
  - Single device time resolution ~6 ps
- Excellent reference timer for subsequent measurement





## DIGITIZATION AND DAQ

- Use DRS4 (Domino-Ring-Sampler) Evaluation Board developed by Stefan Ritt at PSI for MEG2 experiment
- 750 MHz of analog bandwidth
- 5 Gsamples/s (i.e. 200 ps per sample)
- Well validated software and scope applications
- Measured electronic time resolution to be about 5 ps





scope application



## DIGITIZATION AND DAQ

- Use DRS4 (Domino-Ring-Sampler) Evaluation Board developed by Stefan Ritt at PSI for MEG2 experiment
- 750 MHz of analog bandwidth
- 5 Gsamples/s (i.e. 200 ps per sample)
- Well validated software and scope applications
- Measured electronic time resolution to be about 5 ps



Also available as a crate module: 32+4 channels



## SHOWER FLUCTUATIONS

- Shower fluctuation may result in time jitter on the signal pulses
- Quantification of this contribution is key





- Measure time jitter for a prototype sampling calorimeter with precision time capability
- Use Photek-240 as reference
- Use Photek-240 to detect shower secondaries



## SHOWER FLUCTUATIONS

- We measured the time resolution throughout the shower at ~13 ps
- Suggest that shower fluctuations contribute less than 10 ps to the time jitter — taking into account the detector jitter.



## Multichannel Plate as the Active Element of a Shower Maximum Detector, Part II





#### SHOWER POSITION RECONSTRUCTION

#### Use only 9 pixels of the 8x8 matrix



 $\vec{\mathbf{p}} = \frac{\sum_{i \in \text{pixels}} Q_i \vec{p_i}}{\sum_{i \in \text{pixels}} Q_i}$ 

<u>event-by-event shower mean</u> <u>position reconstruction</u>

#### Unfortunately one pixel was dead

NIM. A 828 (2016), pp. 1–7

#### Mean Charge Distribution





#### SHOWER POSITION RECONSTRUCTION



0.02

0<sup>L</sup> 0

2

6

position reconstruction

Shower positions are on average well reconstructed

Cristián H. Peña, Caltech

10

8

12

14

16 Y Axis [mm]

## SHOWER POSITION RESOLUTION

- Model the shower position as the convolution of the beam profile with a Gaussian (resolution)
- We fit the data to extract the resolution (width of the Gaussian)

- Obtain a position resolution of ~1 mm
- Recall that each pixels is
  5.9 mm in size



NIM. A 828 (2016), pp. 1–7



## TIME RESOLUTION

## Look at individual and combined time resolution

#### single pixel time resolution

#### combined time resolution

$$t = \frac{\sum_{i \in \text{pixels}} Q_i t_i}{\sum_{i \in \text{pixels} Q_i}}$$





TIME RESOLUTION

# Combined time resolution at the level of 35-40 ps when using pixelated information



NIM. A 828 (2016), pp. 1–7



## TIME RESOLUTION

## We look at the effect of combining the pixels



- Each additional pixel improves the time resolution
- Time resolution is consistent with a A/ $\sqrt{N}$  + B distribution

#### Important to add transverse information in calorimetric device



#### Combine two timing layer to improve time resolution



BONUS: MULTIPLE TIMING LAYERS

#### <u>Combine two timing layer to improve time resolution</u>





- MCP-based secondary emission calorimeters are a real possibility
- They open a new window into precision timing calorimetry
- Beam test of pixelated of Photonis MCP shows good position resolution
- Transverse information improves the time resolution
- Final time resolution is ~35-40 ps; the 30 ps goal for HL-LHC is around the corner





