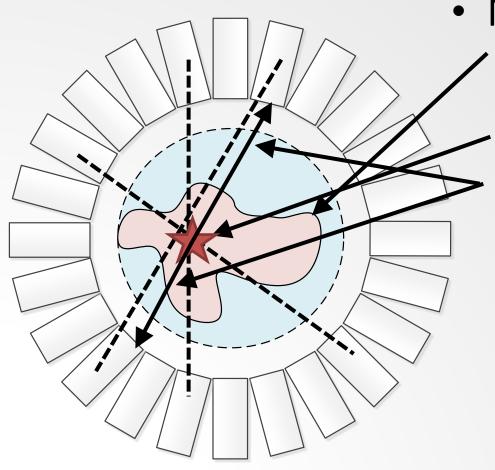

Digital SPAD Scintillation Detector Simulation Flow to Evaluate and Minimize Real-Time Requirements

<u>Marc-André Tétrault</u>, Audrey Corbeil Therrien, William Lemaire, Réjean Fontaine, Jean-François Pratte

Pico-Second Workshop, Kansas City, September 2016



Outline

- Overview for PET and time of flight PET
 - Basic PET principles and why time-of-flight matters
 - Review detector chain towards time of flight
- Precise timing resolution detector design
 - Photodetector
 - DAQ
 - Compromises for real-time embedded microsystem

Positron Emission Tomography

Molecular Imaging Modality

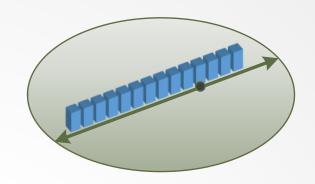
Tracer distribution (positron emitter)

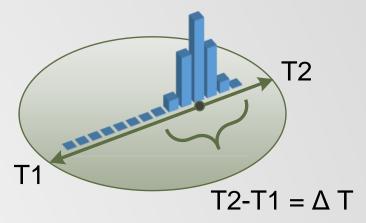
Hot spot on the left side

Positron Annihilation

Collinear 511 keV particles

Line of response


Image Quality Figures of Merit



- Contrast to Noise Ratio from detector's
 - Spatial resolution
 - Energy resolution
 - Timing resolution
- Sensitivity or Noise Equivalent Counts
 - Detector dead time
 - Optimized with real-time processing

Image improvement avenue

- Spatial resolution limit is positron range
 - About 0.5 mm for mainstream tracers
- Improve contrast with time of flight

- 1.5 mm on the LOR needs 10 ps FWHM in coincidence
- Real time image reconstruction (no iterative engine required)

Sensitivity Improvement with TOF

Excerpt from Lecomte, "Evolution of Data Acquisition and Processing in Medical Imaging with Radiation", Real Time Conference 2016

$$SNR \propto \sqrt{\text{Nb Events}} \sim \sqrt{\text{Sensitivity}}$$

$$\frac{SNR_{ToF}}{SNR_{PET}} = \left(\frac{\Delta x^2}{D^2}\right)^{-1/4} = \sqrt{\frac{D}{\Delta x}}$$

$$G = \frac{D}{\Delta x} = \frac{2D}{c\Delta t} \approx \frac{\text{Object Dimension}}{\text{ToF Precision}}$$

40 cm Object
$$\frac{SNR_{ToF}}{SNR_{PET}} = \sqrt{\frac{40 \text{ cm}}{9 \text{ cm}}} = 2.1 \implies G = 4.4$$

4 cm Object
$$\frac{SNR_{ToF}}{\Delta t} = \sqrt{\frac{4 \text{ cm}}{0.9 \text{ cm}}} = 2.1 \implies G = 4.4$$

Budinger TF. Time-of-Flight Positron Emission Tomography: Status Relative to Conventional PET. *J Nucl Med* 24(1):73-78, 1983.

Crystal-based detectors flow chart

Scintillator-based detectors

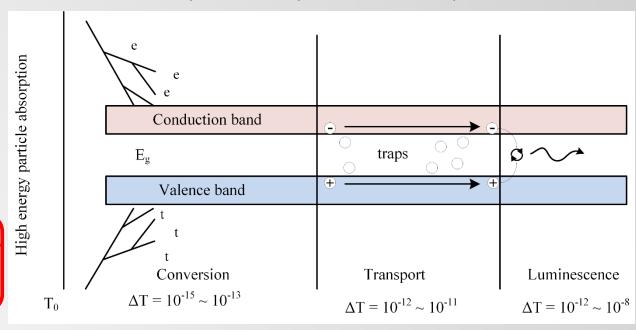
Scintillator Crystal

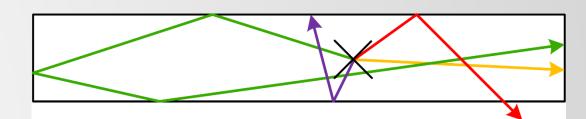
Photodetector

Analog Front-End

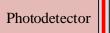
Data Acquisition

Signal processing


Coincidence


Scintillation brief overview

- Factors affecting timing^{1,2}
 - Light yield
 - T_{rise}, T_{decay}
 - Crystal size/length
- Fast TOF Scintillators³
 - LSO, LuAG, LuAP, LaBr₃
- With an <u>ideal</u> photodetector the 1st photon has best timing¹
 - LSO 1st photon has theoretically
 ~35 ps FWHM in coincidence
- 1- Derenzo et al, PMB 2014
- 2- Gundacker et al, NIM 2016
- 3- Conti et al, TNS 2009

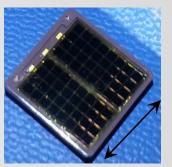

Weber et al, NIM 2004; Mikhailin et al, NIM 2002

Photodetectors

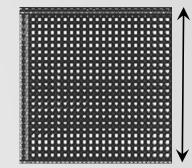
Scintillator Crystal

Analog Front-End Data Acquisition

Signal processing



- ⊗ Bulky, sensitive to magnetic fields
- APD
 - © High PDE, immune to magnetic fields
 - ② Pixelated detector, high count rate
 - ⊗ noisy, limited gain, average timing
- SiPM (Geiger-mode APD, MPPC)
 - Array of Single Photon Avalanche Diodes (SPAD)
 - ② High gain, very fast timing
 - Single photon sensitivity
 - ② Pixelated, high count rate, immune to magnetic fields


www.fireflysci.com

> 10 mm

8 x 8 array

10 mm

1 mm

Timing performance

Scintillator Crystal

Photodetector

Analog Front-End Data Acquisition Signal processing

Where are we?

Experimental measurements with LYSO

	Systems		Table setups	
PMT	473 ps FWHM	(1)	234±20 ps rms	(5)
APD	6.6 ns FWHM	(2)	1.9 ns FWHM	(6)
Analog SiPM	385 ps FWHM	(3)	85±4 ps FWHM	(7)
Digital SiPM Frach et al, 2009	212 ps FWHM	(4)	177 ps FWHM,	(8)
			120 ps FWHM,	(9)

- 1- Wong et al, TNS 2015
- 2- Bergeron et al, TNS 2009
- 3- Levin et al, TMI 2016
- 4- Degenhardt et al, NSS-MIC 2012

- 5- Peng et al, TNS 2013
- 6- Leroux et al, TNS 2009
- 7- Nemallapudi et al, PMB 2015
- 8- Somlai-Schweiger et al, J. Inst. 2015
- 9- van Dam et al, PMB 2013

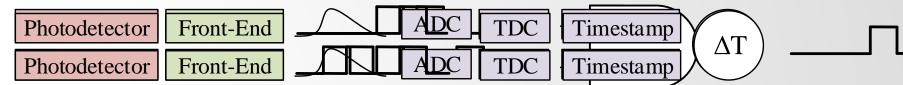
Analog Front End

Scintillator Crystal

Photodetector

Analog Front-End Data Acquisition

- Analog front-end
 - Adapted to photodetector
 - Typically fast and low-noise preamplifiers
 - Anghinolfi et al, TNS 2004
 - Olcott et al, TNS 2005
 - o Callier et al, NSS-MIC 2009
 - Powolni et al, TNS 2011
 - De Medeiros Silva et al, TCS 2014
 - o ... and many more


DAQ systems

Analog Front-End Data Acquisition

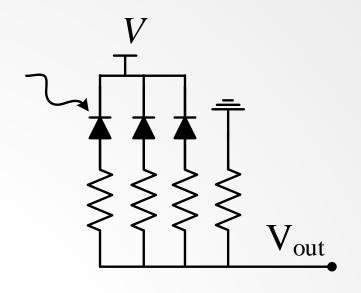
- Real Time Data Acquisition
 - Pulse systems: Lecomte et al, TNS 1990, Young et al, NSS-MIC 1999
 - Modern digital systems :
 - o Free running ADC: Streun et al, NIM 2002, Fontaine et al, NSS-MIC 2004
 - Hybrid ADC and TDC: Wang et al, Real Time 2009
- Going forward, the key DAQ component for timing
 - Time to Digital Converters (Henzler, S., Springer, 2010)
 - Low power with 45 ps resolution → Perenzoni et al, Elec. Lett. 2015

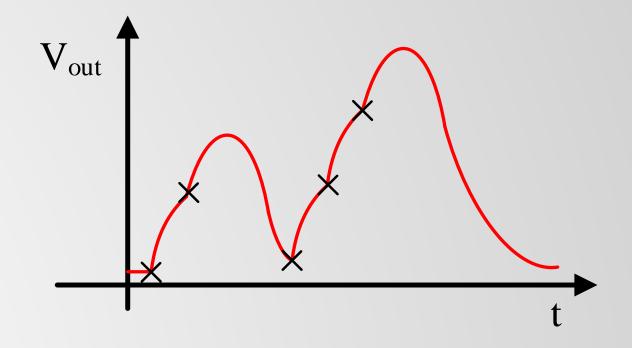
Towards 10 ps time of flight

Photodetector

Analog Front-End Data Acquisition

- 1.5 mm on the LOR needs 10 ps FWHM in coincidence
 - Scint : High light yield, fast rise and decay times
 - Opto : High photodetection efficiency
 - DAQ : Single-shot timing with ps resolution and low jitter $\rightarrow \sigma(t)$
 - DSP: Individual photon distinction would enable better signal processing


- Excellent measurements with SiPM photodetector
 - Why?


SiPM principles

Scintillator Photodetector Pront-End Front-End

log Data
-End Acquisition

- With non-ideal detector, first few photons have best timing information
 - SiPM can see that!

Analog vs Digital SiPM

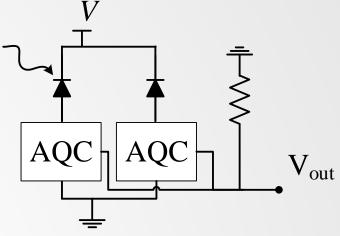
Scintillator Crystal

Photodetector

Analog Front-End Data Acquisition

Signal processing

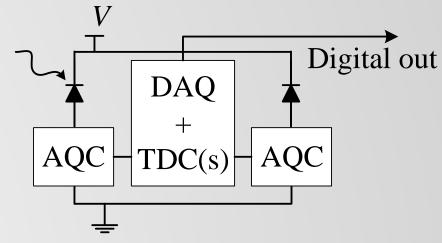
Passive quench SiPM


- Very simple
- Variable cell response

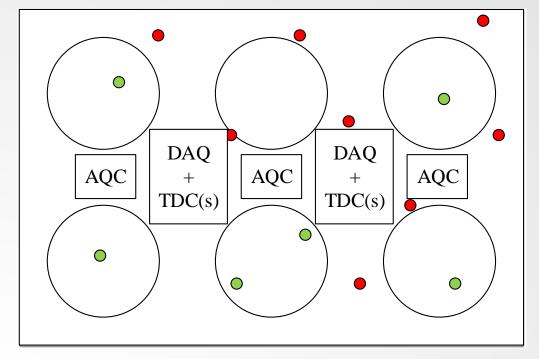
V T T T T T V_{out}

Generic devices, many companies

Active quench SiPM


- Noise suppression
- Temp. invariant signal
- Uniform cell response

Nolet et al, NSS-MIC 2014

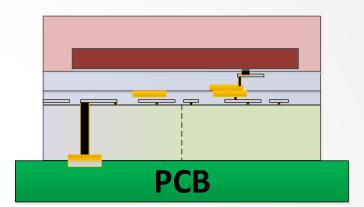

Digital SiPM

No external analog front-end

For PET: Frach et al, 2009 Braga et al, 2014

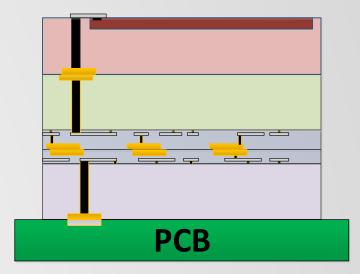
Optical Fill Factor

AQC AQC AQC

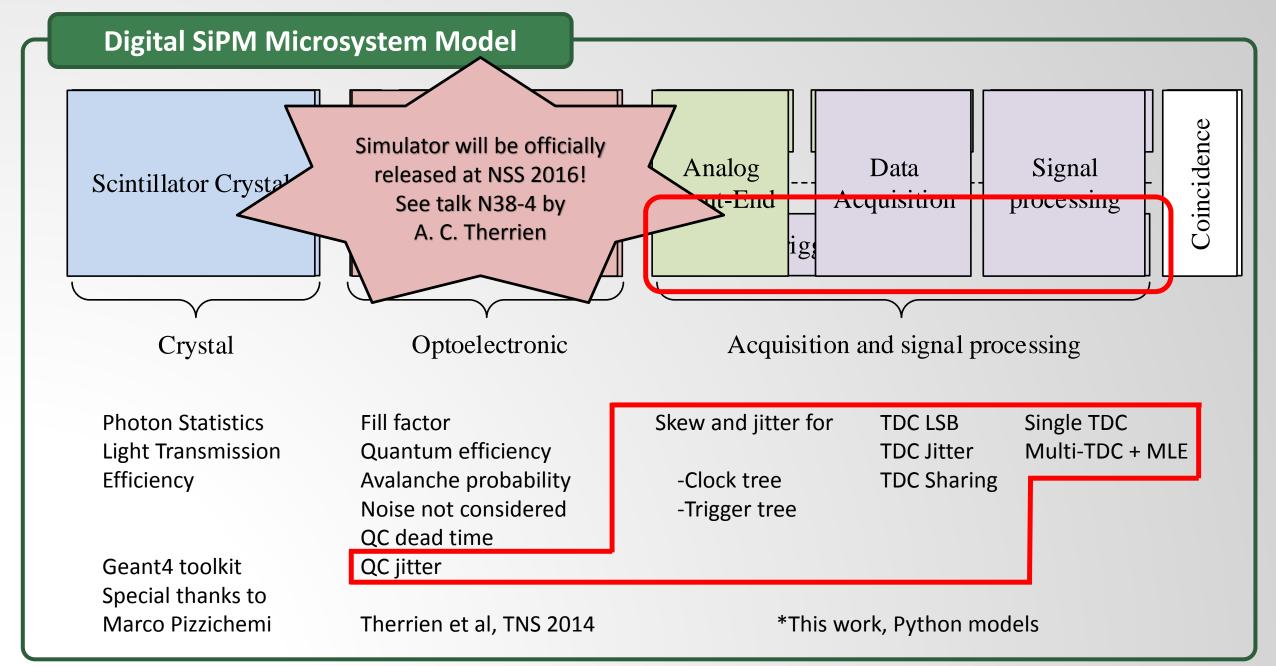

35% fill factor

53% fill factor

- Analog or digital? Same timing with same SPAD arrays for LYSO
 - Gundacker et al, NIM 2015


Vertical Integration for Digital SiPM

- Back-side illumination
 - Infra-red wavelengths
 - Zou, Bronzi, 2014, SOI on CMOS
 - Pavia et al, JSSC 2015, Dual-CMOS



- Front-side illumination
 - Tétrault et al, TNS 2015
 - Test chip in assembly
 - Prelim results at NSS-MIC 2016

Digital SiPM microsystem design

- Implementation boundaries
 - 1 TDC per scintillator
 - First observed photon to reach TDC
 - No post-processing required, excellent real-time performance
 - 1 TDC per cell (400 cells per mm²)
 - Maximum Likelihood Estimator (MLE)
 - Gundacker et al, 2013, van Dam et al, 2013, Venialgo et al, 2015
- Is there a middle point providing the best of both worlds?

Simulation parameters

LYSO

SPAD array

- 40 000 / MeV
- Effective PDE = 18% @ 420 nm
- $1.1 \times 1.1 \times 3 \text{ mm}^3 \cdot 1.1 \times 1.1 \text{ mm}^2$

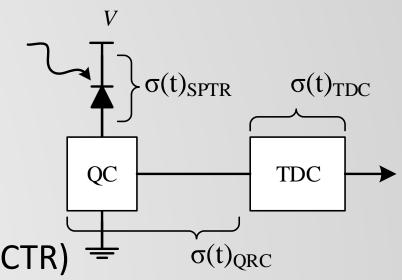
 $T_{rise} = 70 \text{ ps}$

- 484 cells, 50 micron pitch
- $T_{decay} = 40 \text{ ns}$
- Dalsa CMOS HV doping profile
- 20 ns quench/recharge dead time

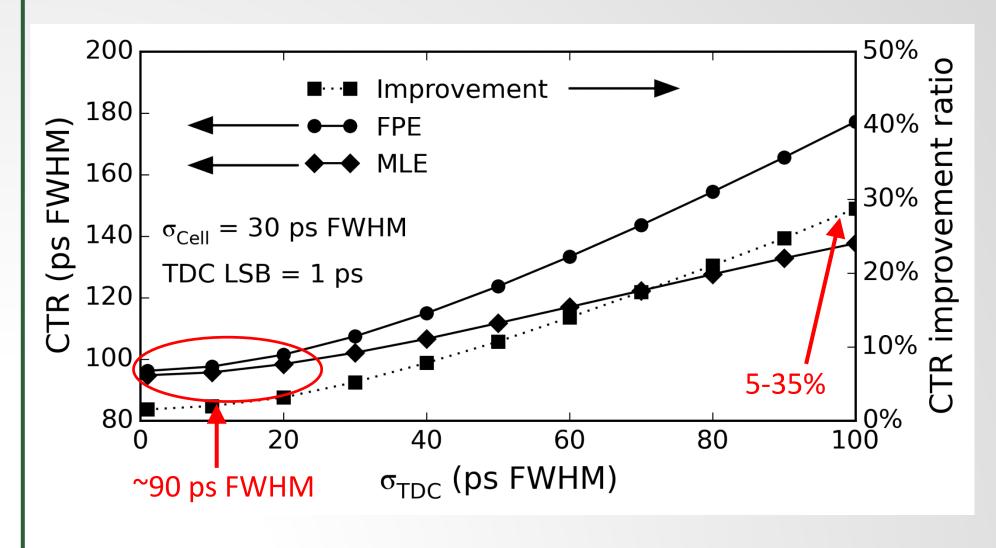
TDC

- Programmable precision
- Programmable resolution
- Programmable SPAD:TDC ratio

Many parameters to consider, needs deep knowledge of entire detector to fully configure


Simulation Outcomes (LYSO)

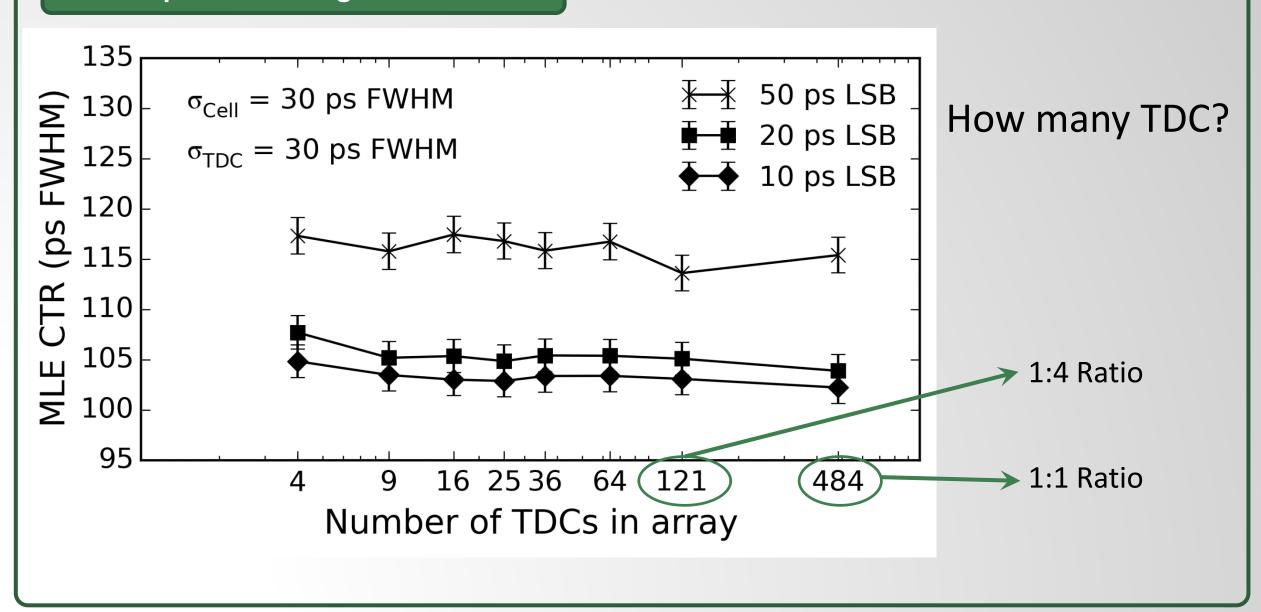
- What is the coincidence timing resolution (CTR) lower limit?
- What is the performance gain between one and many TDCs?
- How many TDCs are actually needed?
 - Will determine real-time load and silicon real-estate for TDCs
 - Faster real time → lower dead time → better sensitivity
- Subset of full simulation results


$$\sigma(t)_{Cell}^2 = \sigma(t)_{SPTR}^2 + \sigma(t)_{QRC}^2$$

 $\sigma(t)_{Cell}^2 = 30 \text{ ps FWHM}$
 $\sigma(t)_{TDC}^2 = 30 \text{ ps FWHM or variable}$

TDC resolution: 1 to 50 ps LSB

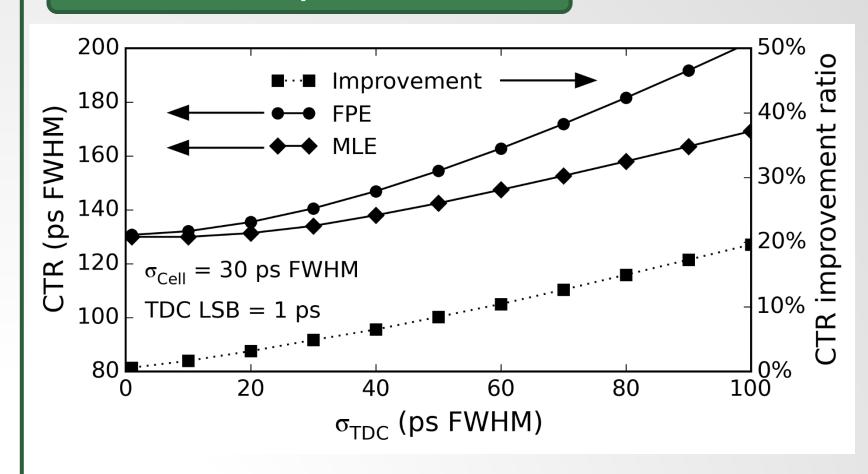
Figure of merit: coincidence timing resolution (CTR)



Full TDC array LYSO results

- 1- Lower limit
- 2- Multi-TS improvement

Impact of sharing TDC LYSO

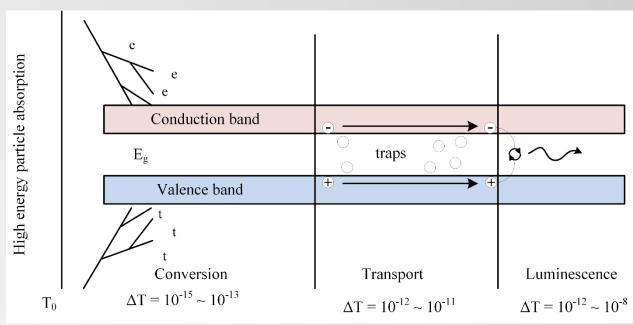

LaBr₃

- Substituted LYSO parameters for
 - Absorption
 - Refraction Index
 - Wavelength emission
 - Light yield = 60 000 / MeV
 - Rise time = 150 ps
 - Decay time = 15 ns

H. T. van Dam, S. Seifert et al, "Optical Absorption Length, Scattering Length, and Refractive Index of LaBr₃:Ce³⁺", IEEE TNS, vol 59, no 3, 2012

J. Glodo, W. W. Moses et al., "Effects of Ce concentration on scintillation properties of LaBr3:Ce", IEEE TNS, vol. 52, no. 5, 2005

Full TDC array LaBr3 results



- Geant4 model needs a review
- Should change
 SPAD profile for
 lower wavelength

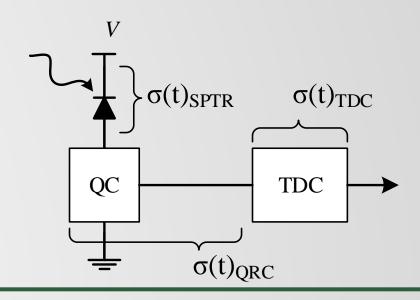
How to reach 10 ps?

- 10 ps beyond current scintillator limit
- Crystal designers have ideas
 - Improve prompt photon yield
 - Cherenkov
 - Intra-band luminescence
 - Nano crystals
 - Cqwells
 - Lecoq et al, TNS 2016
 - Expected light yield
 - Unknown

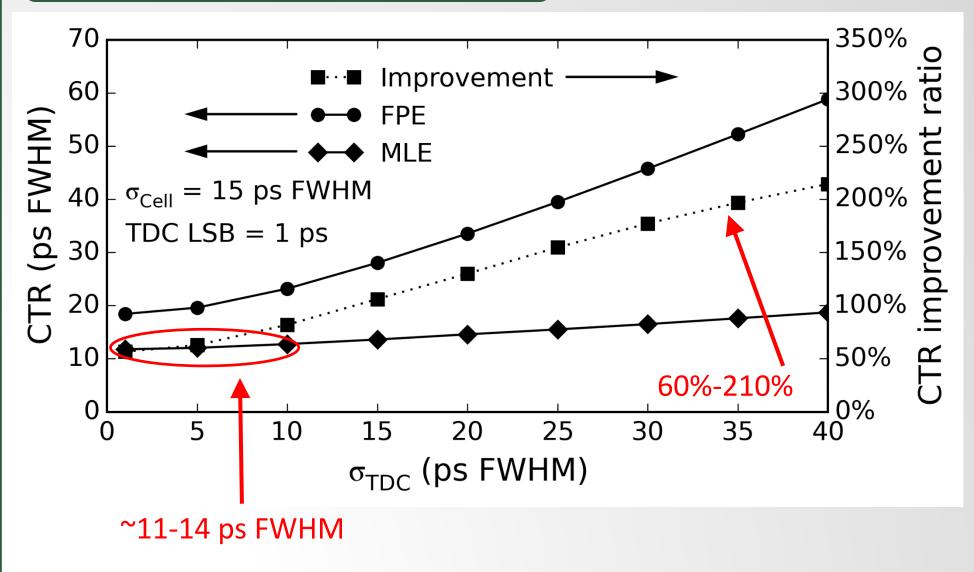
Weber et al, NIM 2004; Mikhailin et al, NIM 2002

- Observed time-stamped prompts
 - About 25 in photopeak events

Simulation Outcomes (Prompts)

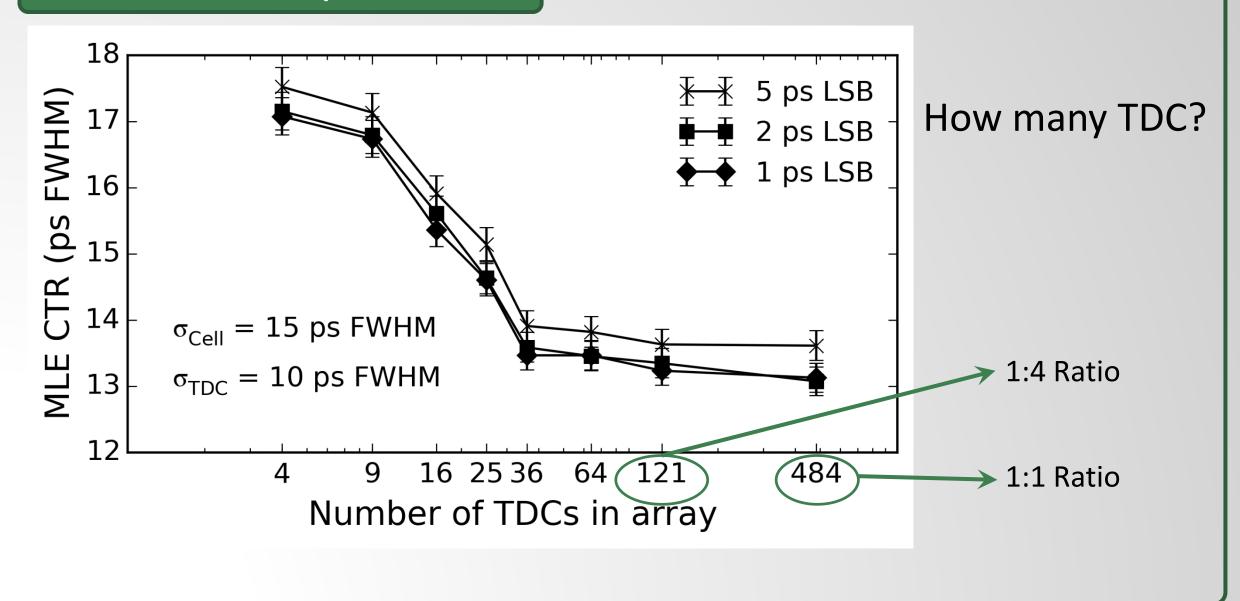

- What is the timing lower limit?
- What is the performance gain between one and many TDCs?
- How many TDCs are actually needed?
 - Will determine real-time load and silicon real-estate for TDCs
 - Faster real time → lower dead time → better sensitivity
- Subset of full simulation results

$$\sigma(t)_{Cell}^{2} = \sigma(t)_{SPTR}^{2} + \sigma(t)_{QRC}^{2}$$


$$\sigma(t)_{Cell}^{2} = 15 \text{ ps FWHM}$$

$$\sigma(t)_{TDC}^{2} = 10 \text{ ps FWHM or variable}$$

$$TDC \text{ resolution : 1 to 5 ps LSB}$$



Full TDC array Prompts results

- 1- Lower limit2- Multi-TS
- improvement

Shared TDC Prompts Results

Outcomes

Current Scintillators

- Not likely to reach 10 ps FWHM CTR
- Moderate gain from multi-TDC MLE
 - Need only a few TDCs to be effective
- Use real-estate to embed other real time tasks
 - MLE calculation
 - Energy discrimination
 - Crystal identification

Future Detector Crystals

- Can theoretically reach 10 ps FWHM CTR
- Good gain from multi-TDC MLE
 - Needs several TDCs for optimal timing
- Compromise between embedded real time features and number of TDCs
 - Simulation flow can guide designers

Where are we?

- Latest Sherbrooke TDC prototype in in 65 nm CMOS
 - Vernier ring approach
 - Better than 10 ps FWHM jitter / 10 ps LSB
 - Less than 40 x 40 um²
 - Low power
 - Preliminary results presented at NSS-MIC 2016
 - SP2-4, J-F Pratte, "3D Digital SiPM for Precise Single Photon Timing Resolution"

Conclusion

- To reach 10 ps timing resolution
 - Crystal light output is a major player
 - Jitter and precision are important, but not sufficient
 - The number of TDCs per pixel also major player
- The real time microsystem complexity is dependant on the potentially reachable timing resolution
- The simulation tool can help predict the overdesign threshold
 - Reduce un-needed real-time burden
 - Dedicate otherwise redundant real-estate to other real-time tasks