

Ps workshop, Kansas City, September 17th 2016

,

STATUS OF DEVELOPMENTS ON THE SAMPIC WAVEFORM TDC

<u>D. Breton², E. Delagnes^{1,}</u>, H. Grabas^{1,3}, O. Lemaire², J. Maalmi², P. Rusquart^{2,} P. Vallerand²

- ¹ CEA/IRFU Saclay (France)
- ² CNRS/IN2P3/LAL Orsay (France)
- ³ Now with SCICPP Santa Cruz (USA)

This work has been funded by the P2IO LabEx (ANR-10-LABX-0038) in the framework « Investissements d'Avenir » (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR).

INTRODUCTION

- SAMPIC_V1 was submitted in November 2014 and considered as releasable ~ one year ago.
- Different groups then started using the modules on their test benches or in test beam.
- On our side, we pursued the characterization of the chip.
- We got a lot of feedback concerning the chip, the module and the software. A raising point was that it was more urgent to improve the system aspects than to concentrate on the already nice time resolution.
- During the last 12 months, we thus mostly work on performing many improvements on digital electronics (SAMPIC & FPGA) and software.
- I will concentrate here on the aspects concerning the chip evolutions.

THE « WAVEFORM TDC » CONCEPT (WTDC)

WTDC: a TDC which permits taking a picture of the signal. This is done via sampling and digitizing the interesting part of the signal.

Based on the digitized samples, making use of a digital algorithm, fine time information can be extracted.

Advantages:

- Time resolution ~ few ps
- No "time walk" effect
- Possibility to extract other signal features: charge, amplitude...

Drawbacks:

- dead-time linked to conversion and readout which doesn't permit counting rates as high as with a classical TDC

THE « WAVEFORM TDC » STRUCTURE

- Overall time information is obtained by combining 3 times :
 - **Coarse** = Timestamp Gray Counter (few ns step)
- - Fine = samples of the waveform (digital algorithm will give a precision of a few ps)
 - Discriminator is used only for triggering, not for timing => no jitter added on measurement, low power
 - Digitized waveform available to extract other parameters (Q, amplitude,...)

GLOBAL ARCHITECTURE

One Common 12-bit Gray
 Counter (FClk up to 160MHz) for
 Coarse Timestamping.

One Common servo-controlled
 DLL: (from 1.6 to 10.2 GHz) used
 for medium precision timing & analog sampling

• 16 independent WTDC channels each with :

✓1 discriminator for self triggering
✓ Registers to store the timestamps
✓ 64-cell deep SCA analog memory
✓ One 11-bit ADC/ cell
(Total : 64 x 16 = 1024 on-chip ADCs)

• One common 1.3 GHz oscillator + counter used as timebase for all the Wilkinson A to D converters.

Read-Out interface: 12-bit LVDS
bus running at 160 MHz (2 Gbits/s)
SPI Link for Slow Control

ANALOG MEMORY (SCA) IN EACH CHANNEL

- 64-cell deep, trade-off between:
 - Time precision / stability (=> short)
 - Bandwidth uniformity (=> short)
 - Time available for trigger latency (=> long)
- No input buffer, single ended
- 3-switch cell structure to reduce leakages and ghosts.
 Switch 3 also isolates from input bus during conversion
- ~ 1 V usable range, > 1.5 GHz BW

 Trigger position marked on DLL cells => medium precision timing and used for Optional Region of Interest Readout (only few samples read)

The "3-switch" memory cell

Layout

size : $20x10 \ \mu m^2$

Design constraints:

- Settling time at 10⁻³ within 800ps (8 cells @10GS/s)
- Bandwidth > 1.5 GHz
- Non linearity < 1%
- Dynamic range ~ 1V
- 3 switch memory cell developed for reducing the leakage currents and the ghost effect (residue of event N-1 on event N)

Charge injections when opening switch 2 => major source for Integral Non Linearity => size of switch 2: tradeoff between RDSon / Bandwidth (\rightarrow wide W_{MOS}) Injected charge / INL (\rightarrow narrow W_{MOS})

Simulation results: INL ~0,2% max for Vin from 50mV to 1V

SAMPIC LAYOUT

- Technology: AMS CMOS 0.18µm
- Surface: 8 mm²
- Package: QFP 128 pins, step of 0.4mm

PAGE 8

SAMPIC LAYOUT

- Technology: AMS CMOS 0.18µm
- Surface: 8 mm²
- Package: QFP 128 pins, step of 0.4mm

| PAGE 9

PROTOTYPING & ACQUISITION SETUP

- 32-channel module integrating 2 mezzanines
- 1 SAMPIC/mezzanine
- USB, Gbit Ethernet UDP (new: special secured version developed by Jihane with no data loss)

- Acquisition software (& soon C libraries)
- => full characterization of the chip & module
- Timing extraction (dCFD, interpolation...)
- Special display for WTDC mode
- Data saving on disk.
- Used by all SAMPIC users.

SAMPIC PERFORMANCES

- Wilkinson ADC works as expected with 1.3 GHz clock
- Dynamic range of 1V with a 0.5mV LSB when coding over 11 bits
- Gain dispersion between cells ~ 1% rms
- Non linearity <1.4 % peak to peak

- After correction of each cell (linear fit) :

 → noise = 0.95 mV rms (∀ Fech)
 ≡ ~10 bits rms of dynamic range

 Discriminateur noise ~ 2 mV rms
 Power consumptio: 10mW/channel
 3dB bandwidth: 1.6 GHz
 Counting rate > 2Mevts/s (full chip, full
 - waveform), up to 10 Mevts/s with ROI

Time Difference Resolution (TDR)

Timing Difference Resolution (TDR)

ΔT RESOLUTION VS DELAY

- TDR < 5 ps rms after time correction.
- TDR is constant for $\Delta t > 10$ ns

ΔT RESOLUTION VS DELAY

- TDR < 5 ps rms after time correction.
 - TDR is constant for $\Delta t > 10$ ns

 ~ unchanged when using 2 chips from 2 mezzanines (slope here comes from slower risetime of 800ps)
 => measurement are uncorrelated
 => channel single pulse timing resolution is < 3.5 ps rms (5 ps/√2)
 From these 2 types of measurements, we could extract the jitter from the motherboard clock source: ~ 2.2 ps rms
 => SAMPIC's own jitter < 2.5 ps rms

PAGE 15

TRICKS FOR UNDERSTANDING RESOLUTION

- This is how we measure the contributions to the resolution: we run at 6.4 GS/s, send two 500 mV pulses separated by 2.5 ns to two channels:
 - 1. of the same mezzanine
 - 2. of two different mezzanines

Same chip

- From this we can extract that the jitter contribution is:
- ~ 1.5 ps rms from the DLL
- ~ 1.8 ps rms from the clock distribution on the motherboard
- ~ 2.4 ps rms from the clock distribution on the mezzanine

Different chips

TIMING RESOLUTION VS RATE

1ns FWHM, 400ps risetime, 0.7V signals sent to 2 channels of SAMPIC

- 7.1ns delay by cable, 6.4 GS/s, 11-bit mode, 64 samples, both INLs corrected
- Rate is progressively increased.

The measured delay and its resolution are stable for channel rates up to 2 MHz

TIMING RESOLUTION (DIGITAL CFD) VS ADC NUMBER OF BITS

- In order to minimize dead-time, ADC number of bits can be reduced: factor 2 for 10 bits (800 ns), 4 for 9 bits (400 ns), 8 for 8 bits (200 ns), 16 for 7 bits (100 ns).
- Looking at the effect of the ADC number of bits on time resolution...
- Signal amplitude is the key element in this case: time resolution degrades for small signals since quantification noise becomes dominant
 - There is **very small loss** in performance between 11, 10 and 9-bit modes.
 - Where quantization noise dominates, other methods than dCFD can be used ...

No degradation on timing for pulses above 100mV for 8 bits & 50mV for 9 bits

TIMING RESOLUTION VS AMPLITUDE & RISETIME 1-NS FWHM - 15 NS DELAY, DIGITAL CFD ALGORITHM

- 2 zones: sampling jitter or S/N limited zones.
- TDR < 8 ps rms for pulse amplitudes > 100mV
- TDR < 20 ps rms for pulse amplitudes > 40 mV
- Can be improved by using mores samples (if feasible and uncorrelated) since dCFD uses only 2 samples

TAKING DATA WITH DETECTORS

- SAMPIC modules are already used with different detectors on **test benches or test beams.** Unfortunately, very little public data available until now ...
- Tested with **PMTs, MCPPMTs, APDs, SiPMs, fast Silicon Detectors, Diamonds**: performances are equivalent to those with high-end oscilloscopes
- Different R&Ds ongoing with the **TOF-PET** community (CERN, ...)
- SAMPIC has been used for test beams of TOTEM and SHIP at CERN
- It is also used for fast mesh-APD characterization and test beams
- **TOTEM** is currently developping a CMS-compatible motherboard housing SAMPIC mezzanines
- **SHIP** is testing SAMPIC for its fast timing detector. SAMPIC option is described in the technical proposal for the fast timing detector and calorimeter (two-gain version)
- SAMPIC is in use at Giessen for **PANDA EndCap DIRC** caracterization.
- It will soon be used for ATLAS HGTD

NIM PAPER RECENTLY SUBMITTED

Nuclear Instruments and Methods in Physics Research A 835 (2016) 51-60

Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

D. Breton^a, V. De Cacqueray^{b,1}, E. Delagnes^b, H. Grabas^c, J. Maalmi^a, N. Minafra^{d,e,2}, C. Royon^f, M. Saimpert^{b,*}

* CNRS/IN2P3/LAL Orsay, Université Paris-Saday, F-91898 Orsay, France

^b IRRJ, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

⁶ Santa Cruz Institute for Particle Physics UC Santa Cruz, CA 95064, USA

^d Dipartimento Interateneo di Fisica di Bari, Bari, Italy

* CERN, Geneva, Switzerland

¹ University of Kansas, Lawrence, USA

ARTICLE INFO

Article history:

Received 8 April 2016 Received in revised form 1 August 2016 Accepted 7 August 2016 Available online 10 August 2016

Keywords: ASIC Time-of-flight Time to digital converter Waveform sampling Time resolution Silicon detector

ABSTRACT

The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/ IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

© 2016 Elsevier B.V. All rights reserved,

http://arxiv.org/abs/1604.02385

RECENT DEVELOPMENTS

- Intermediate version of the chip submitted in November 2015
 - Improved DLL and buffer design (especially for 10GS/s sampling)
 - Nb of bits for coarse timestamp => 16 bits
 - Improved "central trigger" (multiplicity of 2 & OR) with possibility of common deadtime
 - Posttrig now runs over the full sampling window
 - All DACs necessary for controlling the chip have been integrated
 - ADC resolution internally selectable between 7 and 11 bits
 - Integrated TOT measurement
 - "Ping-Pong" (toggling) mode: channels work in pairs. As soon as a channel is fired, the second takes the hand. If the same signal is sent to both channels, this permits reducing the instantaneous dead-time to a few ns.
 - **Translator input block** to deal with any digital signal (unipolar or differential)
- New version of the module motherboard with new features
- New versions of the daughterboards adapted to the new chips
- Constant improvements of Firmware and DAQ software
 - Embedded firmware CFD extraction is being studied
- 64-channel board and 256-channel (512?) mini-crate under study.

TRANSLATOR INPUT BLOCK

- Goals: performing a precise timing of the leading edge of digital unipolar or differential signal and measuring its width (TOT) without adding dead-time
- Digital input signal (LVDS downto SLVS or any unipolar) is translated to analog and adapted to the dynamic range of the sampling cell (has to be low power!)
- Fixed amplitude => only a few samples (ROI) and fast conversion (≤ 8 bits)
- Gives the possibility of an autonomous time calibration for integrated systems

TOT MEASUREMENT

- This addresses the need for measuring the width of signals longer than the sampling window (which corresponds roughly to one main clock period: 6ns @10GS/S to 40ns @1.6GS/s)
- Solution: addition of a 65th cell which specifically measures the « Time Over Threshold » of the input signal thanks to a dedicated ramp generator. The result is simply converted by the ADC in parallel with all the waveform samples.

Measurement ranges between 4 and 300 ns.

NEW DAUGHTERBOARDS DEVELOPMENT

- New mezzanine cards have been
 developed for housing the new
 versions of the chip (including the
 digital differential option)
 - 1. Analog/digital input with MCX
 - 2. Analog/digital input with flat cable
 - 3. Differential digital input with flat differential cable
- Adaptors have also been developed

PRELIMINARY RESULTS OF NEW BLOCKS

TRIGGER OPTIONS

- One very low power signal discriminator/channel
- One 10-bit DAC/channel to set the threshold (which can be external)
- Several trigger modes programmable for each channel:

PROGRAMMABLE DELAY WITH STEP CORRELATED TO SAMPLING FREQUENCY

We need asynchronous delays relative to sampling frequency (gate, posttrig, ...)

- Constraint: small layout footprint (4 blocks per channel), low power
- ⇒ Delay Locked Loop based on a ramp monostable. This permits delivering a simple servo-controlled ramp voltage to the whole chip
 ⇒ Slave blocks with programmable slope

WILKINSON ADC WITH NEW AUTO-CONVERSION MODE

• When triggered, each channel launches its auto-conversion.

- When ramp starts, the value of the continuously running counter is sampled in a dedicated channel register
- When the ramp crosses the cell voltage => the current value of the counter is stored in the cell register (ramp offset).
- As soon as all discriminators of the channel have fired, Analog to
 Digital conversion of the channel is over => optimization of dead time
- During readout, the ramp offset is read before the channel waveform samples.

In "auto-conversion" mode, the ramp offset will be subtracted from the value of the waveform samples.

NEW FEATURES IN NEXT VERSION

- A new version of SAMPIC will be submitted in November.
- Pin to pin compatible with the already existing mezzanines: "only" firmware and software modifications.
- **Redesign of central trigger** to reduce its time response
- **Redesign of translator input block** to improve the shape of the signal
- Channel chaining option: user-defined sets of channels can be chained in time. This permits either increasing the sampling depth of a single channel or studying correlated events on different channels.
- Saturation was not clean in the former versions. It will now happen in a clean way, whatever the conversion mode, thus permitting an easier (wider) dynamic range definition.
- Auto-calibration (ADC and Time INL): a dedicated (DAC + buffer) and a high frequency signal source are implemented in the chip in order to perform both calibrations in standalone.
- Wide range DLL: 3 different sizes of starving transistors can be selected in the main DLL in order to optimize its INL and jitter depending on the chosen sampling frequency

CONCLUSION

SAMPIC has been considerably enriched since November 2014, becoming an actual integrated system, setup by 26 16-bit registers:

- An intermediate version permitted testing many new functionalities:
 - Corrected 10GS/s with new buffers
 - All DACs and current sources integrated
 - New central trigger
 - New posttrig, sampling frequency dependent
 - TOT measurement
 - Auto-conversion
 - Ping-Pong
 - Translator input block
 - New version will be submitted in November, including:
 - Channel chaining
 - Autonomous calibrations (ADC and time INL, TOT)
 - Clean saturation
 - Wide range DLL
- Users feedback was extremely valuable to define these functionalities.
- Now we should be able to reconcentrate on the ps !
- Next possible step: increasing the output data flow ...

- Why the hedgehog ?
- SAMPIC (Sampling Analog Memory for PICosecond timing)

SAMPIC: PERFORMANCE SUMMARY

		Unit
Technology	AMS CMOS 0.18µm	
Number of channels	16	
Power consumption (max)	180 (1.8V supply)	mW
Discriminator noise	2	mV rms
SCA depth	64	Cells
Sampling speed	1 to 8.4 (10.2 for 8 channels only)	GSPS
Bandwidth	1.6	GHz
Range (unipolar)	~ 1	V
ADC resolution	7 to 11 (trade-off time/resolution)	bits
SCA noise	< 1	mV rms
Dynamic range	> 10	bits rms
Conversion time	0.1 (7 bits) to 1.6 (11 bits)	μs
Readout time / ch @ 2 Gbit/s (full waveform)	450	ns
Single Pulse Time precision before correction	< 15	ps rms
Single Pulse Time precision after time INL correction	< 3.5	ps rms

BACKUP SLIDES

OUR FORMER DEVELOPMENTS OF ANALOG MEMORIES FOR WAVEFORM DIGITIZING

HAMAC

1998-2002 DMILL

MATACO

2000-2003

CMOS 0.8µ

- We design analog memories since 1992 => first prototype (PIPELINE V1) of the SCA for the ATLAS LARG calorimeter.
 80,000 HAMAC chips (2002) are on duty on the LHC.
- Since 2002, 3 new generations of fast samplers: ARS, MATACQ, SAM => more than **30,000 chips in use**.
- Our favourite structure is a sampling matrix.
- A few ps time resolution was demonstrated at system level (up to 64 channels) with SAMLONG, but deadtime can be a limitation.

THE SAMPIC PROJECT

- Generic R&D funded by "P2IO Labex" grant
- Initially intended as a common prototype ASIC for high precision time of flight measurement (5 ps rms) in ATLAS AFP and SuperB FTOF

- Goals for the first prototype (SAMPIC0, received in June 2013):
 - Validation of the Waveform TDC structure
 - Evaluation of AMS 0.18μm technology for mixed design
 - Design of a multichannel chip usable in a real environment
 => connected to detector with a real readout and DAQ system
- Core of a future "dead-time free" chip

WHY AMS 0.18M ?

- Based on IBM 0.18µm : IBM quality & documentation
- Good Standard Cells Library
- Good lifetime foreseen (HV module, automotive)
- 1.8V power supply: nice for analog design/ high dynamic range
- Reasonable leakages
- Good noise properties (already checked with IdefX chips for CdTe)
- Reasonable radiation hardness
- Less complex (and less expensive) than IBM 0.13μm
- AMS high quality Design Kit
- Easy access (CMP, Europractice, AMS)
- Very low cost

SAMPICO: XTALK MEASUREMENT

- 800mV, 1ns FWHM, 300ps risetime and falltime injected on **channel 7(blue)**
- Signal measured on the other channels
- Xtalk = derivative and decrease as the distance to the injection channel
- Xtalk signal is bipolar with ~ equal positive and negative lobe
- Similar plot, but shifted if injection in another channel (red)

READOUT PHILOSOPHY

- Readout driven by Read and Rck signals => controlled by FPGA
- Data is read **channel by channel** as soon it is available
- Rotating **priority mechanism** to avoid reading always the same channel at high rate
- Optional Region Of Interest readout to reduce the dead time (nb of cells read can be chosen dynamically)
- Readout of converted data through a 12-bit parallel LVDS bus including:
 - Channel Identifier, Timestamps, Trigger Cell Index
 - The cells (all or a selected set) of a given channel sent sequentially
 - Standard readout at 2 Gbits/s
 - => Rate > 2 Mevts/s (full waveform)
 - Channel is not in deadtime during readout, only during conversion (data register is really a buffer stage)

CALIBRATION PHILOSOPHY

- SCAs-based chips exhibit reproducible non-idealities which can be easily corrected after calibration:
 - The goal is to find the set with the **best performance/complexity ratio**.
 - But also to find the right set for the **highest level of performance**.
- SAMPIC actually offers very good performance with only two types of simple calibrations :
 - Amplitude: cell pedestal and gain (linear or parabolic fit) => DC ramp
 - Time: INL (one offset per cell) => use of a simple sinewave (see backup)
 - This leads to a limited volume of standard calibration data (4 to 6 Bytes/cell/sampling frequency => 5 to 8 kBytes/chip/sampling frequency)
 => can be stored in the on-board EEPROM (1Mbit).
- These simple corrections could even be applied in the FPGA.
- Highest level calibrations permit debugging the chip and pushing the performance to its limit (still unknown).

TIMING NON-LINEARITIES

- Dispersion of single delays => time DNL
- **Cumulative effect** => **time INL**. Gets worse with delay line length.
- Systematic & fixed effect => non equidistant samples => Time Base Distortion

If we can measure it => we can correct it !

But calibration and even more correction have to remain "simple".

TIME INL CALIBRATION AND CORRECTION

Method we introduced in 2009 and used since for our analog memories, assuming that a sinewave is nearly linear in its zero crossing region: much more precise than statistical distribution

• Search of zero-crossing segments of a free running asynchronous sine wave

=> length[position]

- Calculate the average amplitude for zero-crossing segment for each cell.
- Renormalize (divide by average amplitude for all the cells and multiply by the clock period/number of DLL steps)
 => time duration for each step = "time DNL"
- Integrate this plot:
- ⇒ Fixed Pattern Jitter = correction to apply to the time of each sample = "time INL"

Time INL correction:

- Simple addition on T_{sample}
- Also permits the calculation of real equidistant samples by interpolation or digital filtering.

ΔT RESOLUTION VS DELAY

EXPLORING LARGER DELAYS: TOWARD AN « ABSOLUTE » TIME MEASUREMENT

- Now we use 2 channels of a TEK AFG 3252 arbitrary waveform generator and program their relative delay (10-ps steps)
- Slower than the previous generator (2.5ns risetime min)
- <u>TEK</u>AFG 3252 <u>is specified</u> for an absolute precision of few 10 ps delay and a 100ps jitter
- => Measurements are clearly MUCH better

TDR is < 10 ps rms, even for delays up to 10 μ s => 1-ppm RESOLUTION

Difference between AFG programmed delay and measured value is < +/-15ps