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Multi purpose board for a silicon/diamond detector

A one channel board that can be use for the characterization of different solid state detectors.

« Sensors can be read-out using an external amplifier
—> + The amplifier can be characterized injecting an external signal

« The 0 Qresistor can be removed during normal operation

« Thefirst stage is a Charge Sensitive Amplifier

« The second stage is optimizing the output for
timing measurements

| SENSOR |
| PAD
----- | )

Sensors up to 20x20 mm? can be glued and bonded.

The components can be easily changed to accommodate:
« Diamond sensors: ~1 nA bias current, both polarities,

small signal

« Silicon detectors: ~100 nA bias current, small signal

« UfSi: ~100 nA bias current, ~ larger signal

« SiPM: ~ 5 uA bias current, large signal

+/- HV <1000 V J
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Charge Sensitive Amplifier

The output of a Charge Sensitive Amplifier (CSA) is proportional to the charge injected by the sensor.
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Simulation of a diamond detector read-out using a ideal

Charge Sensitive Amplifier
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More details: Sec. 4.5 of Development of a timing detector for the TOTEM experiment at the LHC



http://cds.cern.ch/record/2139815

Broadband amplifier

A Broadband Amplifier (BDA) can take advantage of a fast signal.

%SOQ

SNR for the ideal case of a

read-out resistor:
50 Q

F: Noise Factor
only contribution from the amplifier

Good solution for large and fast signals.

More details: Sec. 4.4 of Development of a timing detector for the TOTEM experiment at the LHC
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- The BW of the amplifier is
larger than the BW of the signal
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' The limited BW of the amplifier
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Simulated diamond detector read for F~ 1.5 at T = 300K.
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http://cds.cern.ch/record/2139815

Amplifier with high input impedance

A different approach that has some advantage of a BDA and some of the CSA is an amplifier with
High Input impedance (Himp).
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Simulated SNR and time resolution for a diamond detector.

More details: Sec. 4.6 of Development of a timing detector for the TOTEM experiment at the LHC ®/16



http://cds.cern.ch/record/2139815

Amplifier with high input impedance

One implementation of a Himp amplifier is using a common emitter with a feedback resistor.

The best value of R for timing has to

]

i é be optimized according to the sensor:
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See yesterday talk 16



http://arxiv.org/ct?url=http://dx.doi.org/10.1016/j.nima.2010.02.113&v=2cfad4d5

Optimization for UfSD

The signal generated at the passage of a MIP by a 50 pm UfSD can be simulated using Weightfield2*.

Using Weightfield2 it is possible to simulate different A simplified signal can be used to simulate the behavior

detectors, in different configurations. of several types of amplifiers.

The reliability of the simulations have been proved in several 50 um UFSD at 200V with a gain 15

occasions.
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http://personalpages.to.infn.it/~cartigli/Weightfield2/Main.html
https://arxiv.org/abs/1608.08681
http://personalpages.to.infn.it/~cartigli/NC_site/Seminars_files/s7p0657.pdf

Performance with different sensor capacitances

The behaviour of the different approaches using 50 pm UfSD can be simulated for several values

of the sensor capacitance.
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Performance with damaged sensors

Supposing that the gain become 50% lower because of radiation damage, the CSA is still the best approach.
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Below 10 pF the CSA is the amplifier with the best time resolution.
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The timing detector for CT-PPS

CMS TOTEM Proton Precision Spectrometer (CT-PPS) adds precision proton tracking and timing detectors in the
very forward region on both sides of CMS to study central exclusive production (CEP) in proton-proton collisions.

Requirement of the timing detector:

Small active area (~ 4 cm?)

Small dead region at the edge and between channels
Low power consumption and low material budget
Radiation hard (proton flux of 5 x 10" cm=2per 100 fb™)

Time resolution of 10-30 ps.

CMS Integrated Luminosity, pp, 2016, vs = 13 TeV

Data included from 2016-04-22 22:48 to 2016-09-06 07:09 UTC
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More details: CT-PPS project a the LHC, L. Forthomme

Nicolo Cartiglia, UFSD update, CT1-PPS -October 2015

CT-PPS proposed sensor geometry

6 mm

|
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[ I | s X spot
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8 mm 4 mm
0.95 mm
16 Pixel ~ 3 mm?2 16 Pixel ~2 mm?
Cap. Pixel ~ 6 pF Cap. Pixel ~ 4 pF

Asymmetric designed
Area = 12mmXémm:;
Thickness = 50 um;

# of pixels = 32

. guEl

No cracks aligned: 2 (3) planes facing the
beam, and 2 (3) turned by 180°

Simulations suggest CSA as the best approach.
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Test of the amplifier

The amplifier was first test using a radioactive source (Sr%°).
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ir |fiv Witm 33923,5,,, Oscilioscops

g to move Marker By up and down.
1.00 kpts

o I -

Y
= -2.00000 ns -168.000 mv
= 1,97580 ns -1.200 mv
= 3.97580 ns 166.800 mv
= 251.5217 MHz

The amplifier and the acquisition chain can be optimized for different scenarios; in this case, they were optimized to have the noise

at the output of the amplifier at ~ 1 mV RMS: the same order of the noise added by the digitization process i.e. 500 mV / 28
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Test Beam in the CERN North Area

The time resolution was measured using a SiPM and a MCP-PMT with Cerenkov bars as time reference

Quartz bars

SensL C- series SiPM
o~ 19 ps

MCP-PMT PLANACON XP85012  The detector was installed on the beam in the H8 area’ using a pre-aligned structure? and
0y~ 22ps  was acquired using a remote controlled oscilloscope: Agilent DSO9254A, 8 bitat 20 Gsa/s
All the tests were conducted at room temperature.

1: Thanks to the TOTEM Collaboration
2: Thanks to N. Cartiglia et al. : arXiv:1608.08681 3116



https://arxiv.org/abs/1608.08681

Measurements on the amplifier
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The pedestal, the rise time and the output amplitude have been measured using a beam of MIPs.

h_risetime_Det0

f,mer—-eean.’g

ean 7.799%e-1
R " 11

Rise time

1500

1000

500

1.5 2 25
t (ns)

il

MPV ~ 120 mV
SNR = 90

FWHM ~ 55mV

1

H&m MAXT | Vour| ]

i PP,

|

0.15 0.2 025 0.3 0.35

The performance measured
with the beam test were
compatible with what expected

from the simulations

Beam: 180 GeV ™t

The sensor was biased at 230 V
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Performance vs bias voltage

A time resolution below 30 ps was obtained, in stable running conditions, using an off-line Constant Fraction Discriminator.
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Measurement using SAMPIC

The SAMPIC requires a calibration procedure, a
preliminary result suggest that the performance are

1% worse than the oscilloscope:

V(19 + 1%)2+(35 + 1%)2 ~ 40.2 ps
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Front-end electronics: amplifier

It is useful to analyse the simplest possible case: a diamond detector read using a simple resistor.

For R < ~100 Q the signal is not separated from the
noise (SNR ~ 1) also for C ~ 0.1 pF.

The only way to have a SNR > 1 is to increase the
value of the read-out resistor.

However, the time resolution is given by:
Oy

O~ ———5
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And higher R means slower signal:
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A useful rule of thumb: minimize C and use R~ 1 ns/C

10 10 1000 10t 10°

Amplifier as close as possible to the sensor (minimize C)
First stage with input resistor ~ kQ

Strategy suggested by HADES @ GSI
10.1016/j.nima.2010.02.113

0% R@

8 /16


http://arxiv.org/ct?url=http://dx.doi.org/10.1016/j.nima.2010.02.113&v=2cfad4d5

The TOTEM timing detector: timing performance

To measure the time resolution of two identical detectors it is possible to measure the arrival time of a particle
crossing both sensors.

l_> ¥ The measured time difference will be distributed around the true value
 — because of the limited resolution of the detectors:

i Vin

> Fhor ~ s + Ths ~ 2t e v VD

T

t 4

Time difference between a sensor of 17.6 mm2(~1.7 pF) and sensors of different size
However, the time resolution depends on the

200
capacitance of the detector!

A series of tests were done using a sensor with
pads of different surface, i.e. capacitance.
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