PAUL SCHERRER INSTITUT

Stefan Ritt :: Muon Physics :: Paul Scherrer Institute

The WaveDAQ system: Picosecond measurements with 10'000 channels

Workshop on pico-second photon sensors, Kansas City, Sept. 2016

-Switched Capacitor Array (Analog Memory) developed at PSI -5 GSPS / 11.5 bits SNR, 9 channels on 5 mm x 5 mm chip, 40 mW / chn. -Used at ~200 locations worldwide -2011, 2014 Clermont-Ferrand: "DRS4 Chip, Timing Calibration"

-Pile-up rejection -Time measurement -Charge measurement

O(~10 ns) O(10 ps) O(0.1%)

MEG Experiment 1999-2013

- Separated DAQ & Trigger
- 3000 Channels DRS4 (0.8 GSPS / 1.6 GSPS)
- 1000 Channels Trigger (100 MSPS)
- 5 Racks

MEG II Experiment 2014-

- 9000 Channels
- Same rack space
 - Avoid dead space between boards
 - Combine DAQ & Trigger
 - Integrate high voltage

- Timing requirement
 - O(10 ps) between any two channels

FED Crate Options

Feature	VME	ATCA	???
Transfer speed O(100 MB/s)	\checkmark	\checkmark	\checkmark
Dual-Star Topology with Gbit links	X	\checkmark	\checkmark
Shelf management	X	\checkmark	\checkmark
Fast trigger distribution	X	X	\checkmark
Low-jitter precision clock O(ps)	X	X	\checkmark
200 V SiPM biasing	Х	X	\checkmark
< 2000 US\$per crate including power	X	X	\checkmark

- Standard 19" crate + custom backplane
- Idea: Not only a solution for MEG II,

but more general "crate standard"

- Take the best ideas on the market and combine them
 - Single 24 V backplane power
 - Serial gigabit links
 - Serial bus for configuration
 - Hot-swap functionality
 - Shelf management (but simpler!) with Ethernet interface
 - Power, Temperature, Fans control, board management

- Power supply on the side
- Cooling from back to front
- Trigger / busy logic through backplane (→ next slide)
- Dual star topology for trigger & DAQ in parallel
- Low skew clock (few ps) for high precision timing
- Firmware download through backplane via shelf management
- High voltage power supply through backplane (200 V)

no "dead" space on top and bottom

Traditional trigger & clock distribution

WaveDAQ System

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT Half Height Backplane -

PAUL SCHERRER INSTITUT Pin Assignment ╔╤╤┥╞╸

PAUL SCHERRER INSTITUT

WaveDREAM Board (WDB)

PE4215

ADG904

Gain	BW _{3db} (MHz)	Noise (mV)
1	940	0.37
10	880	0.40
100	300	1.2
100	500	1.7
100	800	3.3
1		

Different compensations

3.3 mV at output = 33 μV at input

PE4215

Temperature Sensor Extension

VPUP

R_{PUP}

DS18B20 **Programmable Resolution 1-Wire Digital Thermometer**

DESCRIPTION

The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile userprogrammable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of -55°C to +125°C and is accurate to ±0.5°C over the range of -10°C to +85°C. In addition, the DS18B20 can derive power directly from the data line ("parasite power"), eliminating the need for an external power supply.

Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring and control systems.

FEATURES

- Unique 1-Wire® Interface Requires Only One . Port Pin for Communication
- . Each Device has a Unique 64-Bit Serial Code
- accuracy ±0.5°, 3 EUR / sensor
- 1-16 sensors per WD2 board with only one coaxial cable
- Automatic HV adjustments with • temperature changes

- Settings Alarm Search Command Identifies and Addresses Devices Whose Temperature is Outside Programmed Limits (Temperature Alarm Condition)
- Available in 8-Pin SO (150 mils), 8-Pin µSOP, and 3-Pin TO-92 Packages
- Software Compatible with the DS1822
- . Applications Include Thermostatic Controls, Industrial Systems, Consumer Products, Thermometers, or Any Thermally Sensitive System

PIN CONFIGURATIONS

Products. Inc

Trigger Concentrator Board (TCB)

- Receives serial links (SERDES) from WD boards
- Computes crate local trigger
- Send trigger via serial links to global trigger in dedicated crate
- FCI Densishield cables

- Contains master clock
- Distribute clock (jitter < 12 ps measured)
- Distribute trigger
- 4 diff. pairs for
 - Clock
 - Trigger
 - Busy
 - (Sync)

DAQ Concentrator Board (DCB)

- Receive Gbit links from WDB
- Use SERDES instead GTX (lower latency)
- Waveform preprocessing in Zynq
 CPU
- Output via Gbit Ethernet (10 Gbit optional)
- Board under design
- Tests with Zed-Board and "Backplane Simulator"

Picosecond Workshop Kansas City

SPI Flash Access Select

PAUL SCHERRER INSTITUT

SPI Flash connected to FPGA

PAUL SCHERRER INSTITUT

SPI Flash connected to backplane

WaveDAQ Clock Distribution

Picosecond Workshop Kansas City

Reference CLK skew (bs) Skew 100 80 60 40 20 0 -20 -40 10 12 16 0 2 6 8 14 4 Slot Id

MAX9153 LVDS Repeater (1 ps Random Jitter)

Random Jitter

Minimal System

One-crate system Trigger & DAQ

Some lessons learned

Which is the best voltage regulator ?

- Switching regulator (DC-DC converter)
 - -high efficiency
 - -switching noise
 - -not suited for analog designs
- Linear regulator

 lower efficiency ("burns" power to reduce voltage)
 no switching noise
 suited for analog designs

Which is the best voltage regulator ?

- Linear regulator shows a larger response to load transients
- Switching noise can be filtered very efficiently
- Electro Magnetic Interference getting better these days

LTM4614 (switched)

Load Transient Response

Switching Regulator Noise

17 Sept. 2016

Page 33/43

Optimal Clock Distribution

- "Simple" low jitter oscillator is enough (e.g. ASEMPLV-100) (no atomic clock required!)
- Precision clock distribution **ONLY** point-to-point with low jitter LVDS repeater (e.g. MAX9153), **NEVER** split a clock passively
- Power supply noise << 1 mV

Beam test 1 full crate

WaveDAQ Performance

- Trigger resolution 10 ns (100 MHz clock)
- Trigger bandwidth 8 Gbit / s
- Trigger latency <380 ns *) (9000 channels)
- DAQ bandwidth 2 Gbit / s
- DAQ time measurement 10 ps *)
- DAQ dead time 3 35 μs / event
- MEG II: 7 x 10⁷ μ /s, DAQ eff. > 95% @ 30 Hz *)
- *) projected

- WaveDAQ system has been designed to fulfill needs of MEG II experiment
- System has huge potential for many others (costs: ~150 US\$ / channel incl. crate, power, HV)
- Status: Crate fully working, trigger board and WaveDREAM board successfully tested, beam test 2015, DCB under design
- 4 crate system end of 2016, full system (35 crates) in 2017
- DRS5 chip (no dead-time) planned for 2018+

My thanks go to

- Ueli Hartmann, PSI
- Luca Galli, INFN Pisa
- Elmar Schmid, PSI
- Gerd Theidel, PSI

Extra: Visualization with HTML5

- The traditional way
 - Dedicated programs (ROOT, Qt, TCL/TK, Labview, ...)
 - Must be compiled for different OS
 - Require certain libraries to be installed
 - Limited smartphone support

A new opportunity

- Visualization can now be done directly inside the browser using HTML5 – CSS3 – JavaScript – JSON
- Modern browsers run JavaScript at the speed of native programs some years ago
- <canvas> functions are very powerful
- Software updates get deployed automatically
- Automatic support for tablets and smartphones
- Use mongoose library on server side

Picosecond Workshop Kansas City

Smartphone and Tablet

17 Sept. 2016

Picosecond Workshop Kansas City

Page 43/43