

The ATLAS Detector

AFP Goals

- A two-forward-proton measurement for each ATLAS event :
 - forward proton energy and momentum (use $\xi \equiv 1 E_p / E_{\text{beam}}$, θ or t, ϕ)
 - excellent tracking (<10 μ m) and two stations/arm with 12 m lever arm
 - use 3D pixel sensors (50 µm × 250 µm pixel size) with FE-I4b readout
 - identify the vertex of origin (remove single-diffraction pileup) by proton time-of-arrival t_L, t_R measurement
 - if both protons come from a single vertex: $z_{vtx} = (t_R t_L)/2c$
 - excellent proton time resolution needed: ≤ 10 ps for $\mu \leq 50$
 - -Note: some *rare processes* do not require timing:
 - E.g. pp → p_L+X+p_R, X = γγ, WW, ZZ is almost background-free by requiring *kinematic* match between (p_Lp_R) measured in AFP and the system X measured in central ATLAS
- Low Luminosity (low-µ) runs:
 - Single diffraction studies (single Pomeron studies)
 - Double Pomeron Exchange studies

CEPjj

W, Z, y

DPEii

SD

Ultra-Precise Time-of-Flight

- Precise time-of-arrival measurement will help reject pile-up protons:
 - if the two protons come from the *same* vertex (vtx), then: $z_{vtx} = c(t_L t_R)/2$
 - if z_{vtx} measured by AFP can be matched with a vertex of interest in ATLAS, then the process may be of the type we're looking for ...
 - resolution is crucial: $\delta z_{vtx} = (c/\sqrt{2})\delta t$; for $\delta t = 10 \text{ ps} \rightarrow \delta z_{vtx} = 2.1 \text{ mm}$
 - z_{vtx} distribution has rms=40 mm, so fake matches increase with δt and with μ

Picosecond Timing Wkshp

Forward Protons ...

14 [سس] ح³⁰⁷ 12

10

10¹³

10¹²

10¹¹

Beam 1 - PYTHIA8 4C

p/cm²/100 fb⁻¹

Hit pattern at ~210 m for protons with 2% to 15% energy loss is determined by the LHC optics (AFP TDR)

- For β*=0.55 m:
 - upward tilt for protons with energy loss is caused by vertical crossing angle in Point 1
- must get close to the beam
 - ⇒ Roman Pots à la TOTEM CMS-PPS
 - ⇒ insert in LHC aperture
 - ⇒ detectors inside pots

AFP Roman

thin window

115

-110

Roman Pot with Detector

3D silicon pixel detectors size $50\mu m (x) \times 250\mu m (y)$

First silicon tracker before mounting inside the Roman pot at 205 m

➔ Design of the tracker plus Time-of-Flight system mounted on a feedthrough flange for a Roman pot ...

> Beam view: looking downstream through the beam pipe at a fully inserted Roman pot

AFP in 2016 – RP Installation

- Two stations validated on 13 Jan'16
- Cabling:
 - Fast Cabling finished for both arms
 - Control cables finished for both arms
 - All C-side cables connectorized and tested

• <u>Services:</u>

- Compressed air for Cooling
- Secondary Vacuum
- BPM, BLMs connected
- Installation done, connected to Beam Pipe, pump-down and bake-out done …
- Pot Motion calibrated in tunnel:
 - Survey of slide vs motor position,
 - vs switches and LVDT 20 Feb'16

Patch Panels & LV Regulators at 211 m

Status Detectors

- ATLAS
- NEAR Station: 3 3D pixel detector layers; 50µm×250µm/pixel
- FAR Station: 4 3D pixel detector layers HV short on 1st layer but still 95% efficient
 - modules are tuned and timed
- Trigger (each station): 2-out-of-3 layers with HitOR ON
 - − Local Trigger Board (HitBUS chip) → Air-core Cables → CTP
 - AFP is within the (last BX of the) ATLAS Latency !
- Readout:
 - ─ Tunnel (FE-I4→HitBUS chip→Optoboard) → USA15 (HSIO2/RCE system) → ROS
- Note: the new batch of 3D pixel sensors are much superior to the existing sensors – will be installed during the EYETS

TDAQ & DCS Status

AFP TDAQ integration

- AFP running smoothly in ATLAS partition for all combined runs during 5-13 May
- Since 13 May AFP-ATLAS TDAQ integration:
 - Collaboration with ATLAS and IT TDAQ experts
 - Integrated running since July 2016

DCS integration

- Ongoing integration in ATLAS DCS (coordinated with central DCS)
- Work by the AFP DSC team and ATLAS DCS Experts

• AFP insertions at high luminosity:

- 13 May: 600b, 1:14 hr AFP inserted + 0:50 hr TCL6 closed
- Triggers enabled in AFP calibration stream with pre-scale 1000 \rightarrow ~300 Hz
 - HLT_calibAFP_L1AFP_C_ANY and ..._AND
- Successful Low-µ special AFP+ATLAS run on Aug 2, 2016

AFP Insertions

Date	Fills		TDAQ Mode	9	
19-22 April	Beam-Based Alignment and Loss Map	os (6 & 3 hrs)	Stand-alone		
23 April	3b: 2 nd fill (no 3 rd fill)		Stand-alone	6	
24-25 April	12b: 2 nd + 3 rd fill		Stand-alone		
29 April – 5 May	Weasel break -> TDAQ integration				
7 May	49/86b: 2 nd + 3 rd fill; 8.1pb ⁻¹		Integrated		
9 May	300b: 4 th fill (2 nd +3 rd ended before AFF	• in); 7.9pb ^{−1}	Integrated		
13 May	600b: 2 nd fill (1:14h); 9.3pb ⁻¹		Integrated		
	LHC Page1	Fill: 4892	E: 6499 GeV	t(SB): 02:26:51	07-05-16 21:24:2
• Total (TCL6 and/	or AFP in):	PROTON P	PHYSICS: STAI	BLE BEAMS	

Distance from sensor edge, y [mm]

Picosecond Timing Wkshp

Preliminary Performance Plots

ATLAS

300 b fill #4906, AFP readout but triggered by ATLAS

Hit pattern first plane of NEAR station

Caution: hit pattern and MC plots are in somewhat different coordinate systems ...

Distance from sensor edge, y [mm]

Preliminary Performance Plots

300 b fill #4906, AFP readout but triggered by ATLAS

 87.7% of events have no hits (in this plane); remainder is mostly single "tracks":

Pixel hits per event

Preliminary Performance Plots

300 b fill #4906, AFP readout but triggered by ATLAS

- Correlation of hit pixel row (x) in Plane 0 vs. hit pixel row (x) in Plane 1:
 - strong correlation indicates mostly good, parallel tracks
 - mostly single tracks
 - smattering of non-correlated hit pairs from additional tracks?
- Started work on hit reconstruction, tracking, alignment, etc

AFP – ALFA Insertion conflict

- When AFP runs at standard luminosity (high-µ):
 - TCL4 and TCL5 must be opened to give large- ξ acceptance to AFP
 - TCL6 (after AFP) must be closed to 20σ to protect Q6 and downstream
 - this increases the radiation levels at ALFA by a factor ~ 10
 - ALFA electronics is NOT radiation-hard
 - ALFA still needs its large β^* =2500 m run (Sept 2016), and possibly a follow-up early in 2017 ...
- AFP will limit its insertions in 2016 to 0.25 pb-1
- ALFA & AFP are considering shielding to protect ALFA electronics
 - studies by the FLIUKA team are encouraging: already a factor 3-4 reduction in dose
 - further studies are ongoing
 - -expect a result and proposal (+ECR) in September

2016 Low-µ Special Run for AFP

- 600b fill on 01.08 (fill 5151, run 305359)
 - Filling scheme: 25ns_590b_578_523_544_96bpi_11inj
 - 15:20 Start to separate beams
 - 15:24 beams at 5 σ_{H}^{*} separation; $\rightarrow \mu_{peak}$ =0.26
 - 15:30 beams adjusted to peak μ_{peak} =0.13, <µ>~0.03; lumi=2.7e30; beam separation: σ_{H} *=5, σ_{V} *=2.5
 - 15:35 Start to insert RPs
 - 15:42 AFP inserted!
 - AFP at 20 σ, TCL4/5/6 at 15/35/20 σ
- Total time in beam: 4h37; after Pre-Scale adjustments: 3h58

- Integrated luminosity: 0.033 pb⁻¹

 Next low-µ run: after TS2 (~23 Sep)

Low-µ Special Run

Predict per hour using Pythia :

- 7M Soft SD events (proton rate in AFP 2 kHz) - 15k SDjj evts with p_T >20 GeV

Physics with Low-µ Single-Arm AFP

- Predict using Pythia and AFP acceptance at $\beta^*=55$ cm:
 - for μ =0.1, nb=300, standard bunch density, 1 hr:
 - 7M Soft SD events (proton rate in AFP 2 kHz)
 - 15k SDjj evts with pT>20 GeV
 - 500 SDjj evts with pT>50 GeV
 - 3 SD+W evts
- Acceptance in ξ and p_T :

β*=55cm: From R.Staszewski see: https://indico.cem.ch/event/492863/

2 Feb'16

Summary of Single p-Tag Processes

		Analysis	Mativation	$\int Ldt [pb^{-1}]$	Ontimal u	
	t i ca b	Analysis		J Lai [po]	Optillai µ	
7	$p'(\xi, \phi)$	Soft Single Diffraction with AFP0+2				
<i>p</i>	disappears	$d\sigma/dt$, $d\sigma/d\xi$, t-Slope vs. ξ ,	Saturation, MC tuning, Cos-	1	$\mu \sim 0.01$	
P	down the	dN^{\pm}/dp_T vs. t and ξ	mic Ray physics			
-	beam pipe	Single Diffractive jet Production [2	21]			
	Barrer	σ , rapidity gap, Jet structure and	gap survival probability,	10 - 100	$\mu \sim 1$	
		p_T , event shape (MPI [21]); vs. t ,	Pomeron structure			
	and a second	ξ , and β				
	X	Single Diffractive jet-gap-jet Produ	uction [22, 23, 24]			
	A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACTACTACT OF A CONTRACT. CONTRACTACTACTACTA	σ , central gap distribution, Jet	observation of a new process,	1 - 100	$\mu \sim 1$	
n(Jourence	p_T ; vs. t , ξ , and β	test of BFKL dynamics			
<i>P</i>		Single Diffractive Production of γ + jet [25]				
Single Dif		σ , rapidity gap, Jet structure	observation of a new process,	10 - 100	$\mu \sim 1$	
$t \equiv$	$(n'-n)^2$	and p_T , Photon p_T , event shape	mechanism of hard diffrac-			
v	(P P)	(MPI); vs. t , ξ , and β	tion, gap survival probability,			
€ =	1 - E'/E		Pomeron structure			
		Single Diffractive Z Production				
$\beta \equiv$	X_	σ , rapidity gap, charge-	gap survival probability,	10 - 100	$\mu \sim 1$	
$p - x_{\mathbb{P}}$		asymmetry; vs. t , ξ , and	Pomeron structure			
		β				
[ATLAS Forward Proton	Single Diffractive W Production				
	Technical Design Report.	σ , rapidity gap; vs. <i>t</i> , ξ , and β	gap survival probability,	10 - 100	$\mu \sim 1$	
	CERN-LHCC-2015-009		Pomeron structure and flavor			
	ATLAS-TDR-024-2015		composition			

Preparing for the 2nd AFP Arm

• AFP has excellent two-proton missing mass acceptance:

-e.g. for an object produced by $pp \rightarrow p+X+p$, $X \rightarrow \gamma\gamma$:

Preparing for the 2nd AFP Arm

- ECR 2nd Arm (6L1): in circulation ...
 - TE-VSC-BVO started the production of the beam pipe elements
 - BLMs, BPM(s): have BPM; notified BLM group
- Cabling:
 - tunnel cabling was all done
 - Must complete cabling in **USA15**
- Cooling:
 - Compressed-air Vortex Tube cooling with regulators, pressure sensors
 - "AirCoolers" by CTU, Prague
- Secondary Vacuum:
 - pump system available, must be installed in RR13

1 18

2nd AFP Arm – the ToF

- Time-of-Flight detector is the CRUCIAL component here!
 - very non-trivial! prototype holder design ready

17SFP2016

- beam tests (H6, June & September) are critical: R&D is not finished!
- -electronics is crucial: CFD, HPTDC, Trigger, Clock

AFP ToF Detector

- Detector: (see talk by Libor Nozka at this Workshop)
 - Quartz bars (~6×5 mm cross section) at the 48° Cerenkov angle, reflecting into the MCP-PMT ("LQbars")
 - up to 4 bars in series limits the time resolution requirements per channel ...

ToF LQbars

• MCP-PMT:

- 10/6µm pore MCP mini-Planacon (4×4 pixels) by PHOTONIS
 - Reduced MCP-Anode gap distance for reduced inter-pixel cross talk!
 - Atomic Layer Deposition on MCP for long life
 - needed for 10x increase in lifetime (and possibly better gain)

Picosecond Timing Wkshp

ToF Performance in Beam Test

with reduced MCP-anode

Test Beam 2014 & 2015: J. Lange et al., submitted to JINST

- Very good tracker performance: σ_x (track) $\leq 3 \mu m$

- Test Beam in June 2016 (2 weeks):
 - Characterization and optimization of the ToF front-end: radiator bars, cross talk, MCP-PMT, CFD delay and threshold ... PHOTONIS MCP-MA-PMT
 - Excellent performance of the new 10 µm pore MCP-PMT
 - Early results shown in ICHEP Poster

Physics in 2017 and Beyond

- In Dec 2016: AFP and Pb+p? Discussions between HI and AFP communities ongoing ...
- AFP aims to continuously be in the ATLAS standard luminosity running
 - provide a double-proton tag with vertex matching to ATLAS
 - must resolve problems of cohabitation with ALFA !
- Special low-μ (μ~1) runs

- continuation of diffraction program:

- Plans to run after LS2
 - currently under discussion within AFP
 - will depend on AFP physics results before LS2 !
 - must be reviewed by ATLAS before going to an TDR and LHCC

Summary of Double p-Tag Processes

		1		
DPF iet-iet	Analysis	Motivation	$\int Ldt \ [pb^{-1}]$	Optimal µ
	Soft Central Diffraction with AFP	2+2		
$p_1 = t_1 = p_1'(\boldsymbol{\xi}, \boldsymbol{\phi})$	$d\sigma/dt_{1,2}, d\sigma/d\xi_{1,2}, t$ -Slope	general understanding of	1	$\mu \sim 0.1$
P_1	vs. ξ , Mass <i>M</i> and <i>y</i> of the	DPE processes		
	central diffractive system, ϕ_1			
P COOC	vs. ϕ_2 , dN^{\pm}/dp_T ; vs. $t_{1,2}$, $\xi_{1,2}$,			
	М.			
gyteree <	Central Diffractive jet Production	(DPEjj) [28]; see also Sect. A	•	
	$d\sigma/dt_{1,2}$, $d\sigma/d\xi_{1,2}$, t-Slope	gap survival probability for	10 - 100	$\mu \sim 1$
	vs. ξ , $d\sigma/dp_T^{jet}$, Mass M and y	DPE processes, Pomeron		
ورو روم	of the central dijet system, ϕ_1	structure, general understand-		
Q	vs. ϕ_2	ing of DPE processes		
- deed	Jet-gap-jet Production [22, 24]	·		
	$d\sigma/dt_{1.2}, \ d\sigma/d\xi_{1.2}, \ d\sigma/dM_{jj},$	observation of a new process,	10 - 100	$\mu \sim 1$
~ 2	central gap distribution,	test of BFKL dynamics		
$t_i \equiv (p_i - p_i)^2$	$d\sigma/dp_T^{jet}$, ϕ_1 vs. ϕ_2			
	γ + jet Production			
$\xi_i \equiv 1 - E_i / E_B$	σ , rapidity gap(s), Jet structure	observation of a new process,	10 - 100	$\mu \sim 1$
	and p_T , Photon p_T ; vs. $t_{1,2}$, $\xi_{1,2}$,	mechanism of hard diffrac-		
$\beta_i \equiv x_{\rm m}$	and M_{jj}	tion, gap survival probability,		
		Pomeron structure		
$M_{jj} \leq M_{pp} = \sqrt{s\xi_1\xi_2}$				

Anomalous Quartic Couplings

- Low Cross sections: ~few fb
 - AFP has a Missing-Mass resolution (from the proton measurements) of 2-4 %
- Match with invariant central object mass is efficient: (Z→ee, yy)
 - powerful rejection of non-exclusive backgrounds

0.015 < ξ < 0.15, $|\eta|$ < 2.37, $p_{\tau_{1,2}}^{\gamma}$ > 50 GeV ONLY

- Much interest in this from theory side
 - e.g. LHC Forward Physics WG (C. Royon et al.)

By requesting $m_{\gamma\gamma} > 600$ GeV, Only pile-up backgrounds remain

 $\Gamma \sigma \mu$

"Probing anomalous quartic gauge couplings using proton tagging at the Large Hadron Collider", M. Saimpert, E. Chapon, S. Fichet, G .von Gersdorff, O. Kepka, B. Lenzi, C. Royon; 23/05/2014

EVP E

$$\mathcal{L}_{\gamma\gamma\gamma\gamma} = \mathcal{L}_{1} \mathcal{L}_{\mu\nu} \mathcal{L}^{+} \mathcal{L}_{\rho\sigma} \mathcal{L}^{+} + \mathcal{L}_{2} \mathcal{L}_{\mu\nu} \mathcal{L}^{+} \mathcal{L}_{\rho\sigma} \mathcal{L}^{+}$$

γγγγ: Mass matching and pile-up

Picosecond Timing Wkshp

Summary

- ATLAS Forward Proton project:
 - -AFP is installed in one arm and fully operational
 - AFP DCS & TDAQ integrated, AFP is within standard ATLAS latency
 - data taking at high-pileup (~35) was successful
 - intensity qualification up to n_b =600 (to limit radiation dose on ALFA) \otimes
 - background seems low and environment very clean $\ensuremath{\textcircled{\odot}}$
 - Low-µ data taking: 4hrs, and 4hrs more to come ...
 - Rich physics program of soft and hard diffraction!
- Preparation for second AFP arm (6L1) underway
 - -ECR approved
 - Time-of-Flight is the critical item
 - -2 H6 Beam tests:
 - June: 15ps/4 LQbars (w/o HPTDC !) ③
 - September: ongoing; optimize the HPTDC + Trigger
 - Production of other critical items is well underway

Backup

• Note: older slides with detector details

Irradiation of ALFA Electronics

Fill 4906: Radiation pedestal and Nominal level with beam are well measurable:

Timeseries Chart between 2016-05-10 03:55:00.000 and 2016-05-10 10:00:00.000 (LOCAL_TIME)

🔶 BLMEL06R1.B1E10_XRP.A6R1:LOSS_RS08 🔶 BLMEL06R1.B1E20_XRP.B6R1:LOSS_RS08 🔶 BLMMI.07R1.B1T10_XRP.A7R1:LOSS_RS08 🔶 BLMMI.07R1.B2T20_XRP.A7R1:LOSS_RS08

+ BLMTL06R1.B1E10_TCL6R1.B1:L0SS_RS08 + LHC.BCTDC.B6R4.B1:BEAM_INTENSITY_ADC24BIT + TCL6R1.B1:MEAS_LVDT_LU + XRPH.A6R1.B1:MEAS_LIMIT_DUMP_INNER_LU + XRPH.A6R1.B1:MEAS_LIMIT_WARN_INNER_LU + XRPH.A6R1.B1:MEAS_LVDT_LU

🗢 XRPH.A6R1.B1:MEAS_MOTOR_LU 🗢 XRPH.A6R1.B1:MEAS_RESOLVER_LU 🗢 XRPH.B6R1.B1:MEAS_LIMIT_DUMP_INNER_LU 🔶 XRPH.B6R1.B1:MEAS_LUMT_LU 🗢 XRPH.B6R1.B1:MEAS_LVDT_LU 🗢 XRPH.B6R1.B1:MEAS_LVDT_LU

Radiation Dose to ALFA

- Worry: Radiation to non-rad hard ALFA electronics
- Measure in Fill 4919, 601 b:
 - Stable beam
 12-13 May 2016
 - TCL6 & AFP in:
 ~10× increase
 in dose to ALFA
 FAR station ...

 ⇒limit AFP insertion at high-µ to 0.15 fb⁻¹ in 2016
 ⇒n_b≲600

FILL 4919			BLMMI.07R1	BLMMI.07R1	BLMMI.07R	BLMIVI 07R
start	end	type	ALF NEAR	ALF FAR	ALF NEAR2	ALF FAR2
5/12/16 20:30	5/12/16 20:40	Pedestal	2.13E-07	2.03E-07	1.90E-07	1.78E-07
	NDF= 11	rms	3.66E-09	2.02E-09	2.27E-09	1.69E-09
5/12/16 23:30	5/13/16 0:07	Stable Beam	4.94E-07	4.79E-07	2.82E-07	2.49E-07
	NDF= 38	rms	5.43E-09	6.90E-09	3.89E-09	3.59E-09
5/13/16 0:09	5/13/16 0:28	TCL6 in	1.19E-06	2.25E-06	5.59E-07	5.65E-07
	NDF= 20	rms	7.28E-09	7.28E-09	4.03E-09	4.89E-09
5/13/16 0:32	5/13/16 0:52	AFP in	1.56E-06	3.26E-06	6.36E-07	7.33E-07
	NDF= 21	rms	9.84E-09	2.13E-08	4.05E-09	5.38E-09
5/13/16 1:30	5/13/16 1:42	AFP in 2	1.51E-06	3.13E-06	6.17E-07	7.08E-07
	NDF= 13	rms	6.26E-09	1.87E-08	5.00E-09	3.50E-09
5/13/16 1:44	5/13/16 2:10	TCL6 in 2	1.12E-06	2.10E-06	5.30E-07	5.34E-07
	NDF= 27	rms	7.18E-09	1.23E-08	3.66E-09	5.75E-09
5/13/16 2:13	5/13/16 2:30	Stable Beam 2	3.67E-07	4.48E-07	2.41E-07	2.24E-07
	NDF= 18	rms	4.09E-09	8.17E-09	2.64E-09	2.36E-09
5/13/16 7:12	5/13/16 7:40	Pedestal 2	1.59E-07	1.64E-07	1.68E-07	1.46E-07
	NDF= 29	rms	2.00E-09	2.43E-09	2.23E-09	2.77E-09
Start Edge						
Standard dose	with 600b	SB'=SB - Pedestal	2.81E-07	2.76E-07	9.15E-08	7.06E-08
Increase with T	CL6	(TCL6-SB)/SB'	2.49E+00	6.40E+00	3.03E+00	4.48E+00
Increase with T	CL6 & AFP	(TCL6&AFP-SB)/SB'	3.82E+00	1.01E+01	3.87E+00	6.87E+00
End Edge						
Standard dose	with 600b	SB'=SB - Pedestal	2.08E-07	2.84E-07	7.24E-08	7.78E-08
Increase with T	CL6	(TCL6-SB)/SB'	3.60E+00	5.82E+00	4.00E+00	3.99E+00
Increase with T	CL6 & AFP	(TCL6&AFP-SB)/SB'	5.48E+00	9.46E+00	5.20E+00	6.22E+00
Expected 2016	LumInt	25	fb-1			
Allowed ALFA o	dose increase	10.00%				
worst case AFP	LumInt	0.26	fb-1			
avg case AFP LR	icnsind Timing W	fb-1			31	

Radiation Dose to ALFA

- Fill 4906, 313 bunches, Stable Beam @ 10.05.2016 06:02
- discussed with ALFA colleagues and ATLAS RC

				BLMEI.06R1.	BLMMI.07R1.	BLMMI.07R1.	BLMMI.07R1.	BLMMI.07R1	BLMTI.06R1.
			BLMEI.06R1.B1E	B1E20_XRP.B	B1T10_XRP.A	B1T10_XRP.B	B2T20_XRP.A	B2T20_XRP.B	B1E10_TCL.6
			10 XRP.A6R1:L	6R1:LOSS RS	7R1:LOSS RS	7R1:LOSS RS	7R1:LOSS RS	7R1:LOSS RS	R1.B1:LOSS
FILL 4906			OSS_RS09	09	09	09	09	09	RS09
start	end	type	AFP NEAR	AFP FAR	ALF NEAR	ALF FAR	ALF NEAR2	ALF FAR2	BLM TCL6
5/10/16 3:57	,	5/10/16 4:35 Pedestal	2.87E-07	3.08E-07	1.72E-07	1.71E-07	1.71E-07	1.60E-07	2.69E-07
		NDF= 38 rms	1.26E-08	1.69E-08	4.42E-09	4.37E-09	3.37E-09	4.03E-09	1.56E-08
5/10/16 6:02		5/10/16 6:10 Stable Beam	9.38E-07	8.52E-07	3.62E-07	3.56E-07	2.37E-07	2.19E-07	1.15E-06
		NDF= 8 rms	1.81E-08	3.71E-08	3.57E-09	5.49E-09	2.10E-09	3.54E-09	3.82E-08
5/10/16 6:12		5/10/16 6:25 TCL6 In	5.22E-07	3.48E-06	7.70E-07	1.38E-06	4.00E-07	4.07E-07	3.40E-05
		NDF= 13 rms	1.63E-08	5.22E-08	5.88E-09	8.92E-09	4.39E-09	2.71E-09	1.48E-07
5/10/16 6:29)	5/10/16 6:47 AFP in	1.82E-06	4.87E-06	9.80E-07	1.95E-06	4.43E-07	5.00E-07	3.55E-05
		NDF= 18 rms	5.85E-08	5.42E-08	1.22E-08	2.56E-08	3.63E-09	5.48E-09	4.81E-07
					uncer	tainties ≲	3%		
Standard dose w	ith 3	00b SB'=SB - Pedestal	6.50E-07	5.44E-07	1.89E-07	1.84E-07	6.64E-08	5.98E-08	8.82E-07
Increase with TC	L6	(TCL6-SB)/SB'	-6.39E-01	4.84E+00	2.15E+00	5.54E+00	2.45E+00	3.14E+00	3.73E+01
Increase with TC	L6 &	AFP (TCL6&AFP-SB)/SB'	1.35E+00	7.40E+00	3.26E+00	8.66E+00	3.09E+00	4.70E+00	3.90E+01

Expected 2016 $\int \mathcal{L}dt$: 25 fb⁻¹ To limit ALFA Dose Increase to 10%: \Rightarrow AFP insertion limited to 0.29 fb⁻¹ Agreed with ALFA & RC: stop at 0.15 fb⁻¹ \Rightarrow AFP stops Intensity Qualification at 600 b (Note: so far ~0.034 fb⁻¹ accumulated with TCL6 & AFP in)

AFP and ALFA: Complementarity

AFP – Horizontal Pots:

- Iarge t acceptance
- ξ range shifts with optics
- high β^* and low $\beta^*=0.5$ m

ALFA – Vertical Pots:

- Iimited t acceptance
- $\xi = 0$ acceptance for $\beta^* \ge 90$, elastics
- only low-Luminosity,
 high β* runs

Benchmark: DPEjj Processes

- Fast & Full simulation of AFP + ATLAS, including pile-up
 - generator: PYTHIA 8.165 with POMFLUX = 1, 5(MBR)
 - 100 h (1 wk); 2808 bunches, µ=1
- Event Selections:
 - p_T(jet)> 20, 50, 100 GeV
 - double proton tag in AFP
 - *matching* with AFP vertex from timing (σ_t = 30 ps)
 - *single* vertex in ATLAS

17SEP2016

Anomalous Quartic Couplings WWyy

- Sensitivities predicted at the LHC (P. J. Bell, ArXiV:0907.5299): around a few 10⁻⁴ GeV⁻²
- Sensitivities predicted with AFP:

]	limits $[10^-$	$^{6}\mathrm{GeV}^{-2}]$			
	form factor	$\left a_{0}^{W}/\Lambda^{2}\right $	$\left a_{C}^{W}/\Lambda^{2}\right $	$\left a_{0}^{Z}/\Lambda^{2}\right $	$\left a_{C}^{Z}/\Lambda^{2}\right $		$ a_0^W $
05% 01	$\Lambda_{cut} = \infty$	1.2	4.2	2.8	10		0
95% 0.1	$\Lambda_{cut} = 2 \mathrm{TeV}$	2.6	9.4	6.4	24		1
2 - avidance	$\Lambda_{cut} = \infty$	1.6	5.8	4.0	14	1	0.
30 evidence {	$\Lambda_{cut} = 2 {\rm TeV}$	3.6	13	9.0	34		1
5 discovery	$\Lambda_{cut} = \infty$	2.3	9.7	6.2	23		1
50 discovery {	$\Lambda_{cut} = 2{\rm TeV}$	5.4	20	14	52		2

30 fb⁻¹

200 fb⁻¹

1	limits $[10^-$	$^{6}{ m GeV^{-2}}]$	
$\left a_{0}^{W}/\Lambda^{2} ight $	$\left a_{C}^{W}/\Lambda^{2} ight $	$\left a_{0}^{Z}/\Lambda^{2}\right $	$\left a_{C}^{Z}/\Lambda^{2}\right $
0.7	2.4	1.1	4.1
1.4	5.2	2.5	9.2
0.85	3.0	1.6	5.7
1.8	6.7	3.5	13
1.2	4.3	4.1	8.9
2.7	9.6	5.5	20

M. Saimpert, E. Chapon, S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, "Probing anomalous quartic gauge couplings using proton tagging at the Large Hadron Collider", Trento,16 April 2014. C. Royon, O. Kepka, Phys. Rev. D 78 (2008) E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

• improvement by a factor ~100 over non-AFP measurements $\mathcal{L}_{6} = \frac{-e^{2}}{8} \frac{\alpha_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} + \frac{-e^{2}}{16\cos^{2}\theta_{W}} \frac{\alpha_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$ $+ \frac{-e^{2}}{16} \frac{\alpha_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} \left(W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+} \right) + \frac{-e^{2}}{16\cos^{2}\theta_{\Theta}} \frac{\alpha_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\alpha} Z^{\alpha} Z_{\beta}$ $ITSEP2016 16 \Lambda^{2} F_{\mu\alpha} F^{\mu\alpha} \left(W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+} \right) + \frac{-e^{2}}{16\cos^{2}\theta_{\Theta}} \frac{\alpha_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\alpha} Z^{\alpha} Z_{\beta}$

3-D SiT & ToF Beam Test

Trigger:

- AND of 3 planes (FE-I4 HitOR)
 DAQ:
- RCE-based (AdvancedTCA)
- used for IBL stave testing
- worked VERY well in test beam!

Performance:

- ─ Efficiency ≥98%/plane
- 98% single track events,0.4% empty triggers
- Track CoG resolution: σ_x =7 µm, σ_y =36 µm

Production Status:

- Sensors cut, Under Bump Metallization done
- FE-I4 in house, to be sent for UBM
- Flexes designed, prototype available critical path
- Sensor card and holder designed and produced

Setup in test beam Nov 2014 CERN SPS

Tracker: 4+1 3D FEI4 pixels → trigger: 0 & 3 & 4 Timing: Quartic 4 trains of 2 LQbars

Quartz+SiPM fast timing reference (not for final AFP detector

Beam Test: Time-of-Flight Detector

17SEP20

-200

-150

-100

-50

50

100

150

200

250

0

∆t [ps]

Picosecond Timing Wkshp

AFP in 2016 - Detectors

11 Silicon 3D detector assemblies produced at IFAE (more in coming months)

- 7 assemblies are operational
- Assemblies precision-mounted on AI-CF carrier cards (Bergen)
- FLEX (Oslo)
- Heat Exchanger holds Tiltbars (Bergen)
- -40 C air from AirCooler (Stony Brook)
- Installation: this week
 - leak testing Mo-Tu

trial assembly with 2 bad assemblies (20.02.2016)

Other Items for the 2nd Arm

- Stations:
 - stations are in production at Vakuum Praha expect by mid-June/July
 - pedestals & supports all done by ATLAS TC
 - small parts (done)
- Roman Pots:
 - 2 production Pots: Alberta June/July
- Detectors:
 - Tracker:
 - new wafers look very good (next slide)
 - AI-CF carrier cards (ordered)
 - heat exchanger (in production)
 - other holder parts (done by Bergen)
- Other Infrastructure:
 - LVregs for ToF (Milano)
 - Local crates for ToF electronics & trigger (PA-b, Trig, CFD, HPTDC)
 - Patch panels & local cables

Backup – ToF MCP-PMT

MCP-PMT Life Time and Rate

Summary of Single p-Tag Processes

					Critical Critical	
		Analysis	Motivation	$\int Ldt \ [pb^{-1}]$	Optimal µ	
	$\frac{t}{(\xi,\phi)}$	Soft Single Diffraction with AFP0	+2			
p	ρ (S, φ)	$d\sigma/dt$, $d\sigma/d\xi$, t-Slope vs. ξ ,	Saturation, MC tuning, Cos-	1	$\mu \sim 0.01$	
	D down the	dN^{\pm}/dp_T vs. t and ξ	mic Ray physics			
	beam pipe	Single Diffractive jet Production [2	21]			
	Q	σ , rapidity gap, Jet structure and	gap survival probability,	10 - 100	$\mu \sim 1$	
	×	p_T , event shape (MPI [21]); vs. t ,	Pomeron structure			
		ξ , and eta				
	q(1)	Single Diffractive jet-gap-jet Production [22, 23, 24]				
		σ , central gap distribution, Jet	observation of a new process,	1 – 100	$\mu \sim 1$	
n		p_T ; vs. t , ξ , and β	test of BFKL dynamics			
P		Single Diffractive Production of γ + jet [25]				
	Single Diffractive Production	σ , rapidity gap, Jet structure	observation of a new process,	10 - 100	$\mu \sim 1$	
	$t \equiv (p' - p)^2$	and p_T , Photon p_T , event shape	mechanism of hard diffrac-			
		(MPI); vs. t , ξ , and β	tion, gap survival probability,			
	$\mathcal{E} \equiv 1 - E'/E$		Pomeron structure			
		Single Diffractive Z Production				
	$\beta \equiv x_{-}$	σ , rapidity gap, charge-	gap survival probability,	10 - 100	$\mu \sim 1$	
		asymmetry; vs. t , ξ , and	Pomeron structure			
	\backslash	β				
		Single Diffractive W Production				
		σ , rapidity gap; vs. <i>t</i> , ξ , and β	gap survival probability,	10 - 100	$\mu \sim 1$	
			Pomeron structure and flavor			
			composition			
17SF	=P2016	Picosecond Timing Wksh	0		42	

Summary of Double p-Tag Processes

	Analysis	Motivation	$\int Ldt [pb^{-1}]$	
DPE jet-jet	Soft Central Diffraction with AFP	2+2	J [r +]	- F F
$p_1 = t_1 \qquad p_1'(\xi, \phi)$	$d\sigma/dt_{1,2}$, $d\sigma/d\xi_{1,2}$, t-Slope	general understanding of	1	$u \sim 0.1$
P_1 P_1 P_1	vs. ξ , Mass M and y of the	DPE processes	_	r ····
	central diffractive system, ϕ_1			
P	vs. ϕ_2 , dN^{\pm}/dp_T ; vs. $t_{1,2}$, $\xi_{1,2}$,			
	М.			
	Central Diffractive jet Production	(DPEjj) [28]; see also Sect. A		
-	$d\sigma/dt_{1,2}$, $d\sigma/d\xi_{1,2}$, <i>t</i> -Slope	gap survival probability for	10 - 100	$\mu \sim 1$
	vs. ξ , $d\sigma/dp_T^{jet}$, Mass <i>M</i> and y	DPE processes, Pomeron		
00000000	of the central dijet system, ϕ_1	structure, general understand-		
A R	vs. ϕ_2	ing of DPE processes		
teee	Jet-gap-jet Production [22, 24]			
	$d\sigma/dt_{1.2}, \ d\sigma/d\xi_{1.2}, \ d\sigma/dM_{jj},$	observation of a new process,	10 - 100	$\mu \sim 1$
$($ $)^2$	central gap distribution,	test of BFKL dynamics		
$t_i \equiv (p_i - p_i) \qquad \backslash$	$d\sigma/dp_T^{jet}, \phi_1 \text{ vs. } \phi_2$			
	γ + jet Production			-
$\boldsymbol{\zeta}_i \equiv 1 - \boldsymbol{E}_i / \boldsymbol{E}_B$	σ , rapidity gap(s), Jet structure	observation of a new process,	10 - 100	$\mu \sim 1$
	and p_T , Photon p_T ; vs. $t_{1,2}$, $\xi_{1,2}$,	mechanism of hard diffrac-		
$\beta_i \equiv x_{\mathbb{P}_i}$	and M_{jj}	tion, gap survival probability,		
- v H ,v		Pomeron structure		
$M_{jj} \le M_{pp} = \sqrt{s\xi_1\xi_2}$				

Backup – Radiation Levels

- Radiation levels for 100 fb⁻¹
- inputs: ALFA and TOTEM measurements
- AFP Full simulations in minbias events (below)
- early FLUKA calculations (A Mereghetti, 2009)

Irradiation of AFP Electronics

estimates for 100 fb ⁻¹ (need update!)	5 cm from beam @214 m	Tunnel floor @214 m	RR13 @beam level
Electronics exposed:	PA-a	PA-b, Trigger	CFD, HPTDC, Clock
High-Energy hadrons	5·10 ¹² /cm ²	10 ¹⁰ /cm ²	5·10 ⁹ –10 ⁸ /cm ²
1 MeV-equiv. neutrons	5·10 ¹¹ /cm ²	5·10 ¹⁰ /cm ²	10 ⁹ /cm ²
Integrated dose	5000 Gy	50 – 10 Gy	1 – 0.1 Gy

- 1. HiRad protocol:
 - Neutrons or HE protons: $10^{12} 10^{13}$ /cm²; γ : 1 10 kGy.
- 2. MedRad protocol:
 - Neutrons or HE protons: $10^{11} 10^{12}$ /cm²; γ : 10 1 kGy.
- PA-a chips (PSA4-5043+): HiRad
- PA-b boards & trigger: MedRad
- NINO chips (trigger): MedRad
- CFD daughter boards: MedRad
- HPTDC chips: MedRad

Cfr. ALFA radiation dose LHC Run1 measured over 2010–2013 (~30 fb⁻¹): ~20-30 Gy in each pot (\geq 10 cm from beam) See: K.Hiller, S.Jakobsen, S.Franz, ALFA General Meeting, Cracow, June 5-7, 201.

Irradiation – Sep 2013

Irradiated at LANL Sept 2013; S. Seidel et al. (UNM), K. Gray (UTA):

800 MeV p, ~7 cm from direct beam; *passive*

- dose: 6.5-8.7×10¹² p/cm², 2.3-3.1 kGy
- for 100 fb⁻¹: ~expected for PA-a; ~50× expected for PA-b and CFD
- devices are all operational after irradiation!

Irradiation @ LANSCE - Jan 2014

Jan 31- Feb 2 irradiation at LANSCE Protocol:

- Active irradiation
- up to 1.0×10^{13} p/cm², in 10 steps of 1×10^{12} p/cm²
- i.e. 10 pulses of 10¹¹ protons per step

4 HPTDC chips

2 HPTDC chips: 1×10^{12} p/cm² 2 HPTDC chips: 1×10^{13} p/cm²

January 31- Feb 2 Irradiation

People: Tim Hoffman (UTA); Sally Seidel, Martin Hoeferkamp (UNM)

Protocol: Active irradiation – keep voltages on!

- up to 1.0×10¹³ p/cm², in 10 'steps' of 1×10¹² p/cm²; verify operation before & after each step.
- i.e. 1 'step' equals ~10 pulses of 10^{11} protons/pulse, 1 Hz, ~1 cm Ø

Early results:

- HPTDC readout did not work (cable too short) → 2 Channels were monitored on scope; all 4 channels were powered throughout the run.
- Irradiation to 2.2×10¹³ p/cm², 7.8 kGy
- 2 monitored channels were still operating at the end of the run

Next:

- Wait for cool-off and return of parts (any time now ...)
- Pre-Amps, CFDs: Re-test performance and compare with non-irradiated parts
- HPTDC chips: mount on HPTDC board and check operation