Advanced Particle Flow with Timing Information?

Graham W. Wilson Univ of Kansas Sept. 17th 2016

Talk title slide from Pico-second Timing Workshop, Chicago 2006 ... Fast Timing for ILC detectors ?

Graham W. Wilson Univ. of Kansas ((OPAL) / DØ / ILC)

(After working for 3×10^{20} ps on ILC issues, a clean start signal would be great !)

Conclusions Revisited

- Old Conclusion: ILC detectors should take advantage of some of the possibilities for implementing fast timing at the sub-100 ps level in a strong B-field, IF they can be implemented in ways which clearly enhance the overall performance of a general-purpose detector.
- At the time not at all obvious that precision timing per se would be much use for particle-flow. Some strategically placed timing layers for TOF can be helpful – but in no way a game-changer for the overall particle-flow performance.
- Now with calorimetry timing per cell becoming feasible in a high granularity calorimeter in an integrated way timing can and I think will be very important for particle-flow performance.
 - To date. Very little dedicated work on timing though.

Today's Talk

- Ideally stimulate discussion on how to scale up fast timing developments to full scale collider implementations. Hopefully thinking in that direction can be stimulated.
- In practice, given my expertise, the talk focusses on particle flow that relates closely to overall detector design for ILC with a view to where timing may play a role.
 - This is a direction which is being pushed also by the adoption of ILC-like calorimetry for CMS HGC and the need there for pile-up mitigation
- What I would like is input on what are sensible and implementable target resolutions so that studies that show off the potential capabilities for a future detector can be done.
 - In contrast to HL-LHC, there is still time for development.

Advanced Particle Flow with Timing Information?

Graham W. Wilson (CALICE, CMS, ILC) Univ. of Kansas Sept 17th, 2016

(After working for some part of 6×10^{20} ps on ILC issues, a clean start signal would be great !)

Motivation

- A primary detector performance driver for new collider experiments, especially e⁺e⁻, like ILC, is the mass resolution for particles decaying hadronically.
 - Particles we know: W, Z, H, t.
 - $-\Gamma$ values of 2.0 GeV, 2.5 GeV, 4 MeV, 1.4 GeV.
 - Γ /M values of 2.5%, 2.8%, 32 ppm, 0.8%.
 - W/Z separation => $\sigma_E/E \approx 3\%$.
- Advanced Particle Flow. Vision = Reconstruct event as fully as possible. Like a bubble chamber but better.
 - Use all possible information including priors to reconstruct event particle by particle.
 - Measure mass and its uncertainty event-by-event.
 - Detector performance = raw resolution \oplus algorithms.
 - Does precision timing have a role ?

Particle Flow

• Now widely used in design of future detectors.

• Lots of work already on the algorithm side for various detector/experiments.

Advanced Particle Flow

- Improve jet energy resolution beyond apparent "perfect particle-flow" intrinsic resolution limitation.
- Understand and estimate errors jet by jet
- Use physics constraints like
 - Mass constraints example $\pi^0 \rightarrow \gamma \gamma$ (*)
 - Vertex constraints
 - Charge conservation
 - Baryon-number conservation
 - Particle ID. Charged particle ID, but also neutral hadron ID.
 - Use dE/dx, timing, shower shapes, range etc.
 - Throwing the PDG at the jet

International Linear Collider (ILC) $\sqrt{s}=200 - 1000$ GeV. Start at $\sqrt{s}=500$ GeV

Proposed e⁺e⁻ collider facility to precisely measure Higgs particles and top. At KU working on physics issues and overall detector concept. Japan considers hosting.

ILC Detector Overview

- Rather clean environment.
 - No L1 trigger needed. Minimal multiple interactions.
- Emphasis on measuring complete events (tracks, photons, neutral hadrons, missing E_T)
 - the focus is on easily integrable and robust detector technologies which will just work, with high precision, reliability, redundancy and robustness.
 - High granularity, hermeticity, low-mass tracking.
- Particle-flow paradigm for reconstructing hadronic jets promises circa 3% energy resolution per jet. Detector designs with the ECAL and HCAL inside coil.
 - Constrains opportunities for additional PID like devices, but also offers opportunities.
 - Bubble-chamber like reconstruction of complete events.
 - eg. temporal calorimetry ??

Basic ILC Parameters

Designed for $\sqrt{s}=200 - 1000$ GeV. Start at $\sqrt{s}=500$ GeV.

- Bunch structure:
- $(\Delta t)_{\rm BX} \approx 337 \ {\rm ns.}$
- 2820 bunches per bunchtrain. 5 bunch-trains/s.
- $\sigma_x = 474$ nm, $\sigma_y = 6$ nm
- $\sigma_z = 300 \mu m$

- Only around 0.5% duty factor needed.
- Can reduce average power consumption.
- Pile-up not a primary concern

Note CLIC $(\Delta t)_{BX}=0.5$ ns

What is ILD ?

International Large Detector

A modern detector designed for ILC. Similar size to CMS. ILC: higher energy (x 5), higher luminosity (x 1000), much better detector.

Detector Design Philosophy

Designed based on the **particle-flow** approach to complete reconstruction of the event.

Major emphasis on granularity so that individual particles are separated and unambiguously reconstructed.

Requires hardware and software in the design process.

Particle-Flow in a Nut-Shell

E(jet) = E(charged) + E(photons) + E(neutral hadrons)

- Outsource 65% of the event-energy measurement responsibility from the calorimeter to the tracker
 - Emphasize particle separability (large R) and tracking
 - Leading to better jet energy precision
- Reduce importance of hadronic leakage
 - Now only 10% instead of 75% of the average jet energy is susceptible
 - Detector designs suited to wide energy range
- Maximize event information
 - Aim for full reconstruction of each particle including V⁰s, kinks, π⁰ etc.
 - Understand energy response and resolution event-by-event.

Particle AVERAGEs

ILD Detector Sub-systems

Barrel Detector Parameters

Barrel system										
System	R(in)	R(out) z [mm]		comments						
VTX	16	60	125	3 double layers layer 1: $\sigma < 3 \mu m$	Silicon pixel sensors, layer 2: $\sigma < 6 \mu m$	layer 3-6 $\sigma < 4 \mu m$				
- SIT - SET - TPC	153 1811 330	300 1808	644 2300 2350	2 silicon strip layers 2 silicon strip layers MPGD readout	$\sigma=7\mu m$ $\sigma=7\mu m$ $1 imes 6 { m mm}^2$ pads	$\sigma~=~60 \mu m$ at zero drift				
ECAL	1843	2028	2350	W absorber	SiECAL	30 Silicon sensor layers, $5 \times 5 \text{ mm}^2$ cells 30 Scintillator layers, $5 \times 45 \text{ mm}^2$ strips				
HCAL	2058	3410	2350	Fe absorber	AHCAL	48 Scintillator lay- ers, 3×3 cm ² cells, analogue 48 Gas RPC layers, 1×1 cm ² cells, semi-digital				
Coil Muon	3440 4450	4400 7755	3950 2800	3.5 T field 14 scintillator layers	2λ					

ILD Particle Flow Performance

Status with current algorithm (v01-17-07, PandoraPFA v02-00-00 and ILD_o1_v5 model). (Marshall, Green)

Confusion = Energy deposits mis-assigned (double-counted or wrongly ignored).

Timing and Particle-Flow

- There are two main areas.
- 1. Particle time-of-flight for mass assignment
 - Charged particles
 - Neutral particles (neutral hadrons)
- 2. Using timing at the cell and cluster level for confusion reduction.

Energy Confusion in Particle Flow

- Charged Hadron Neutral Hadron confusion
 - Fake neutral hadrons from charged hadron shower fragments
 - Neutral hadrons lost in nearby charged hadron showers
- Photon Charged Hadron confusion
 - Photons lost in nearby charged hadron showers
- Photon Neutral Hadron confusion
 - Minor issue for energy. Importance depends on e/h ratio.

Timing potentially can be very helpful

 $E_2 = 10 \text{ GeV}$

E' = 10 GeV

Temporal Calorimetry

2 GeV γ (4mm x 4mm pixels)
Time assignments to cells, to clusters, to particles.

- Cluster time resolution depends on individual cell time resolution, f (E_{dep}), and number, N, of cells, validity of time propagation model and intra-shower time dispersion.
 - Note. Some of the shower particles go backwards ...

Is TOF and/or PID important for particle flow?

Contribution of charged-track mass ignorance to overall event energy at Z^0 .

 $\sigma = 0.35$ GeV equivalent to $3.7\%/\sqrt{E}$ (NOT COMPELLING FOR TOF!, especially given other tools like dE/dx)

TOF has potential for resolving some confusion in the calorimetry.

Positive time ID of photons.

Use time differences caused by bending in field to distinguish clusters originating from charged / neutral clusters ? Useful for eg K⁻/ K⁰_L discrimination ?

Particle-by-particle jet reconstruction systematics will demand good control of $\pi/K/p$ particle fractions. Most particles in energetic jets are still soft ..

Additional path-length for charged particles

(High B-fields have some advantages for timing enthusiasts)

Low momentum μ/π is an interesting new capability which psec-TOF could address !

Fast Timing / Temporal Calorimetry

Idea: time resolution at below the 100 ps level is easily achievable with dedicated detectors. Can it be applied in a useful way in an ILC detector ?

Can TOF help measure neutral hadrons at low p?

confusion.

Outlook

- ILC detectors envisage high granularity ECAL (5mm x 5mm x 30) and HCAL (30mm x 30mm x 48).
 - Timing for each cell is on our radar.
 - Demonstrating that calorimeter timing is necessary remains to be done
 - I am optimistic that timing will be very beneficial
 - Good input on reasonable assumptions very welcome.
 - Great to see the CMS test beam results.
- Certainly scope for ILC detectors to adopt non-invasive precision timing layers for charged particle TOF. Especially now that 35 ps with Si is feasible.
 - VTX, SIT, SET
- Defensible integrated timing concepts + target resolutions welcome

Backup Slides

242			e	-	
- I	J	А	2	2	

Q Interaction	No Picking	🖏 Settings
a second a s		

Shape

12

-Actions / Settings

Zoo

Translate to Picked Object

Pick while Moving/Dragging

Picked objects (0):	Options

Type	Points	Code
2007		

Attributes of picked object (0): Options... Name Value Unit Node

Zoom into Region

ansiate to Pickeu Object

Run:0 Eve

un:0 Event: 0													
🔄 Event 🛛 🗸	•	Colle	ctio	n:	Eca.	lBar	rHits	size:131	flags	:e000	0000		
EcalBarrHits EcalEndconUite		id: sy	id:	id	id:	id: z	raw en	corrected e	x (mm)	y (mm)	z (mm)	▼ tim	
EcalEnucaphilis EorwardEcalEndcan		2	11	0	639	-1	.0010073	.063037	-174.51	1302.0	-1.7500	4.4064	
HcalBarrHits		2	11	0	639	0	.0011621	.072726	-174.51	1302.0	1.7500	4.4137	191
		2	10	0	636	-1	7.0932E-4	.044391	-170.19	1298.9	-1.7500	4.4181	
LuminosityMonitorH	_	2	10	0	637	-1	.0013573	.084945	-173.66	1298.4	-1.7500	4.4183	
MCParticle		2	11	0	639	1	.0011043	.069108	-174.51	1302.0	5.2500	4.4222	
MCParticleEndPoint		2	12	0	641	-1	2.6792E-4	.016767	-176.29	1305.5	-1.7500	4.4281	
MuonBarrHits		2	10	0	636	1	.0022967	.14373	-170.19	1298.9	5.2500	4.4442	
	2	2	13	0	643	-2	2.1419E-4	.013405	-177.14	1309.2	-5.2500	4.4499	
<		2	12	0	642	-2	5.1488E-4	.032223	-179.76	1305.1	-5.2500	4.4520	1
													Concession of

- - 29

Temporal calorimetry for particle flow ?

Idea: Use time difference between $\beta=1$ straight line (photon) and $\beta<1$ curved track (charged pi, K, p)

Related Meetings

- ILC
- ILD
- CALICE
- Energy and Time Measurement with High Granularity Silicon Devices, DESY June 2016.