

Teaching and Research @ IAG

Laerte Sodré Jr.

IAG – USP

INFIERI 2016

4th Summer School on INtelligent signal processing for FrontlEr Research and Industry

January 23rd to February 3rd, 2017

IAG: Instituto de Astronomia, Geofísica e Ciências Atmosféricas

Departments:

- Astronomy
- Geophysics
- Atmospheric Sciences

- Faculty: 69 (+7)
- UNDERGRADUATES: 345
- GRADUATES: 236
- POSTDOCS: 66
- Good CAPES grades!

ASTRONOMY

- FACULTY: 31 (+4)
- UNDERGRADUATES: 67
- GRADUATES: 71+29
- **POSTDOCS: 40**
- **CAPES GRADE:** 7

GEOPHYSICS

- FACULTY: 20 (+2)
- UNDERGRADUATES: 171
- GRADUATES: 50
- **POSTDOCS: 12**
- **CAPES GRADE: 6**

ATMOSPHERIC SCIENCES

- **FACULTY: 18 (+1)**
- UNDERGRADUATES: 107
- **GRADUATES: 86**
- POSTDOCS: 14
- CAPES GRADE: 7

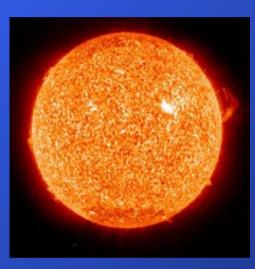
IAG: Instituto de Astronomia, Geofísica e Ciências Atmosféricas

Undergraduate courses:

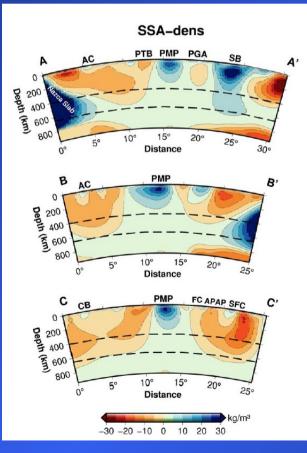
- Astronomy (2009) 20/yr
- Geophysics (1984) 30/yr
- Meteorology (1977) 30/yr

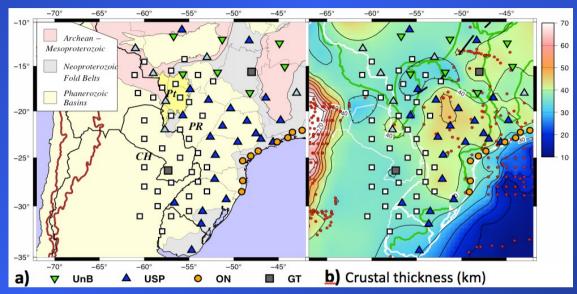
Graduate courses:

- Astronomy (1973)
- MSc in Teaching of Astronomy (2013)
- Geophysics (1974)
- Meteorology (1975)
 - >1000 PhD and MSc!


Astronomy @ IAG

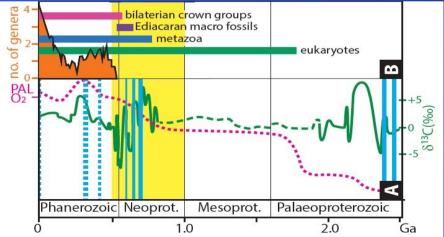
Solar System Exoplanets, Astrochemistry & Astrobiology Stellar Structure and Evolution Stellar Populations Milky Way Formation and Evolution of Galaxies Physics of Black Holes and compact objects Cosmology





Geophysics @ IAG

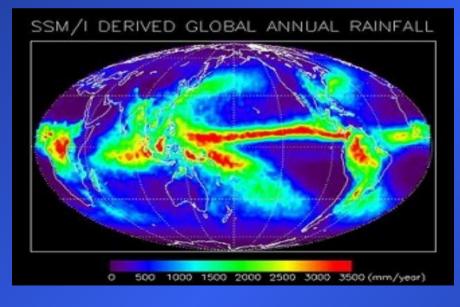
Structure and Dynamics of the Earth: relation between deep and surface processes



Density of South America up to depths of 800km

Brazil crustal thickness from seismological tomography

Interaction Geophysics – Biology – Atmosphere in the primitive Earth: transition from the PreCambrian to Cambrian and the origin of the Oxygen in Earth



Atmospheric Sciences @ IAG

- Physical Processes in the Atmosphere
- Atmospheric Pollution
- Micrometeorology
- Atmosphere Biosphere Interaction
- Climate and Global Warming

IAG infrastructure for research

HPC

- Several clusters!
- Laboratório de Astroinformática:
- 2304 cores (192 Opteron processors)
- +distributed processing
- +GPUs

RESEARCH LABs:

- Meteorological stations
- Seismology
- Paleomagnetism
- SOAR remote observation room
- Air pollution

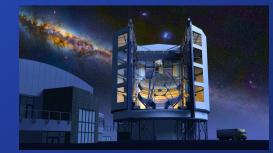
IAG infrastructure for research

Development of instruments:Workshops: optics, mechanics, electronics

Inauguration Feb 2017

Brazilian Optical Astronomy Landscape

- Observatório do Pico dos Dias- LNA
- Gemini Observatory (6.5%)
- SOAR Telescope (34%)
- GMT (4%, SP)
- ESO? pending ratification by the Congress
- J-PAS, T80-S



Instrumentation for optical telescopes

- SOAR: SIFIS, BTFI, STELES
- J-PAS (JPcam, T80Cam), South-Pol
- Subaru: PFS
- ESO: CUBES (VLT), Mosaic (ELT-MOS)
- GMT: GCLEF ...
- •

SIFIS- SOAR Integral Field Unit Spectrograph PI: B. Barbuy, J. Lépine, C. Gneiding (LNA)

1300 fibers IFU Microlens array: 26 x 50
Two plate scales: 0.15"/pixel, field 3.9x7.5"
0.3"/pixel, field 7.8x15"
Sky IFU
Fiber bundle: 14m length of "blue" fibers (50µm core)

Bench spectrograph
VPH gratings
R~1000 - 30000
Detector: 2k x 4k Lincoln Labs CCD

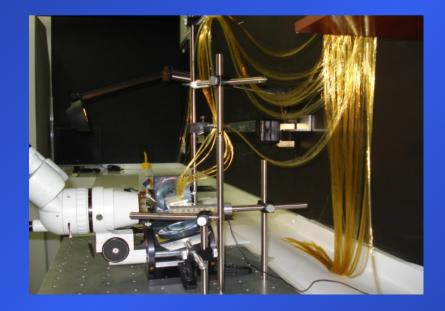
STELES- SOAR Telescope Echelle Spectrograph PI: Bruno Castilho (LNA)

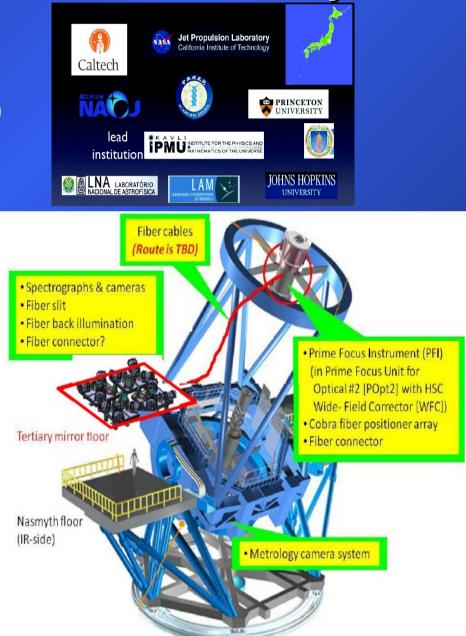
- Two channel, VPH cross dispersed echelle spectrograph
- White pupil configuration
- Bench mounted
- Nasmyth focus, slit fed
- Resolving power 50.000 (3 2.5 pixel resolution) with a 0.8" slit. Higher resolution can be achieved with narrow slits.
- Wavelength range 3000 8900Å (blue arm 3000-5500Å) red arm 5300-8900Å)

BTFI- Brazilian Tunable Filter Imager PI: Cláudia Mendes de Oliveira

<mark>two modes:</mark> iBTF (tunable filter) Low resolution mode: 5 < R < 4,000

dual Fabry-Perot High resolution mode: 600 < R < 35,000

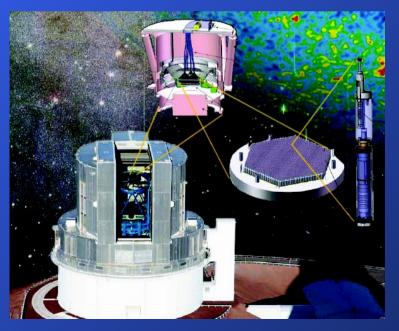




PFS/SuMIRe Prime Focus Spectrograph for the Subaru Measurement of Images and Redshifts survey

- PI: Hitoshi Murayama Kavli IPMU (U. Tokyo)
- Survey epoch: 2019-2023
- Spectrograph for the Subaru Telescope: 2400 optical fibers within a FOV of 1.3 deg diameter
- Spectral coverage: 0.38 1.3 microns, R ~ 3000 – 5000
- Brazil (USP+LNA): optical fiber subsystem

PFS/SuMIRe


Prime Focus Spectrograph for the Subaru Measurement of Images and Redshifts survey

- Science:
- Baryon Accoustic Oscilations (BAO) @ 0.8 < z < 2.4 (9.3 h⁻³ Gpc³)
- Cosmological distances with accuracy of 3%; structure growth with 6%
- Local Cosmology: Milky Way & Andromeda history through the observation of ~10⁶ stars
- Chemo-dynamical evolution and dark matter in Local Group dwarf galaxies
- Galaxy populations and structures @ 1<z<2
- "Lyman break" & "Lyman alpha" galaxies @ 3<z<7: glimpses on reionization

Takada et al., 2014 arXiv:1206.0737

http://sumire.ipmu.jp/en/2652 https://www.youtube.com/watch?v=5mW3v2k8Ofo

J-PAS, J-PLUS, S-PLUS

- J-PAS: Javalambre Physics of the Accelerating Universe Astrophysical Survey
- J-PLUS: Javalambre Photometric Local Universe Survey
- S-PLUS: Southern Photometric Local Universe Survey

Javalambre Astrophysical Observatory

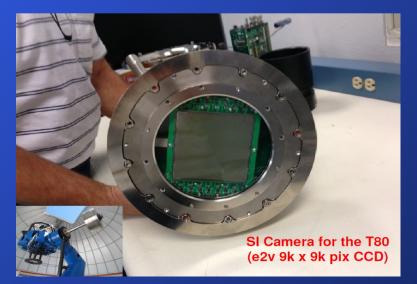
Operated by CEFCA Centro de Estudios de Física del Cosmos de Aragón, Teruel, Spain

Cerro Tololo mushroom farm

Javalambre Astrophysical Observatory

two survey telescopes @JAO: 2.5m (FOV 3 deg diam) & 80cm (FOV 2 deg diam)

JAO T250 telescope

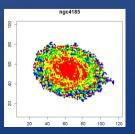

T80-N,S telescope

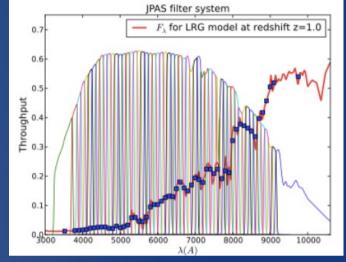
T80-S @ CTIO

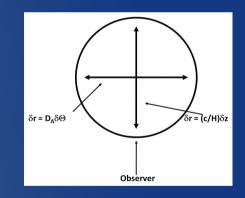
JPCam mosaic of 14 10kx10k CCDs (2nd largest astronomical camera!)

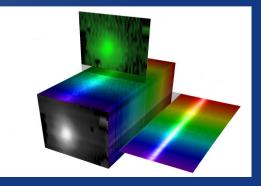
J-PAS

Javalambre Physics of the Accelerating Universe Astrophysical Survey

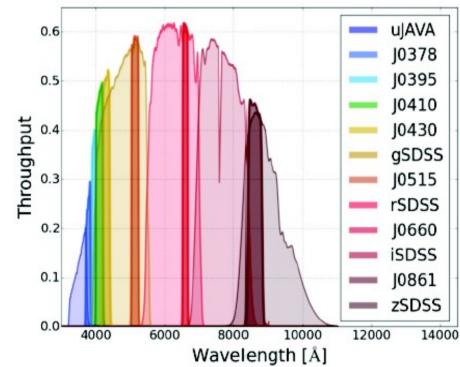

j-pas.org


arXiv: 1403.5237


- Collaboration between Brazil and Spain
- Photometric survey of ~8500 sq. deg. to i~22
- Photometric system with 59 filters


(54 narrow band, 5 broad band)

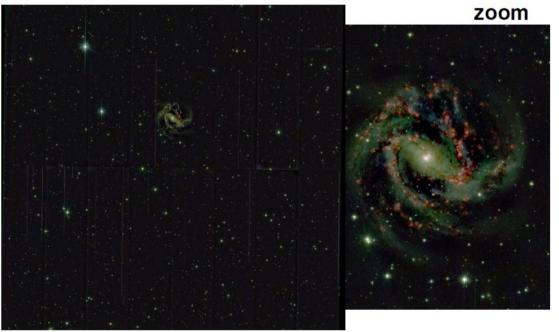
- Main driver: the nature of Dark Energy through measurement of the BAO scale up to z~1
 Large scope of science: from asteroids to cosmology...
- J-PAS photometry ~ low resolution spectrum (R~40-60) for each pixel in the sky up to 23 mag arcsec⁻²!
- distribution of stellar population properties within galaxies


J-PLUS (780-N)

- J-PLUS: Survey with T80-N (@JAO) PI: Javier Cenarro (CEFCA) Motivation:
- Photometric calibration for J-PAS
- Test of J-PAS scientific and technical management systems

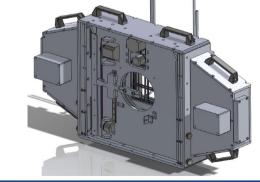
- 12 filters: SDSS griz + 8 narrow/intermediate band filters
- Survey area: 5000 sq. deg.
- ~3 years, started Nov 2015
- Science: from asteroids to distant quasars

S-PLUS (T80-S)


Principal Investigator: Claudia Mendes de Oliveira (IAG) Project Scientist: R. Overzier (ON)

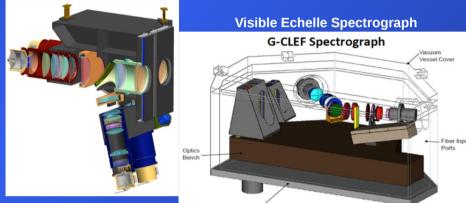
starts TODAY!

M83


Full field

T80 South Polarimeter

SOUTHPOL - polarimetric survey with T80-South



New Large Astronomical Projects @ IAG

GMT: Giant Magellan Telescope (4%, SP) - 2023

- **@ Las Campanas Observatory (Chile)**
- FOV of 20', resolution ~0.020" at 2.2 µm (10x better than HST)
- seven 8.4m mirrors (equivalent to a single 24.5m mirror)
- **PI: João Steiner**

Visible Multi-Object Spectrograph - GMACS

New Large Astronomical Projects @ IAG

LLAMA: Large Latin American Millimiter Array- 2018

- @ NE Argentina (4820m)
- 12m diameter antenna (similar to those used by ALMA)
- Angular resolution of 8" at 900 GHz to 3' at 35 GHz
- PI:Jacques Lepine

- Antenna & detectors ~ ALMA
- Operation as a single dish or part of a VLBI network: increase x10 the resolution of the ALMA interferometers

New Large Astronomical Projects @ IAG

ASTRI Mini Array (CTA precursor)

- Collaboration with INAF (Italy) and North-West University of South Africa
- @ Chile
- operational by 2019
- PI: Elisabete de Gouveia Dal Pino

- nine 4.3m Cherenkov telescopes for ultra-high energy y-ray observations (up to – 100 TeV)
- FoV = 9.6 deg, resolution ~arcmin,

energy resolution 10-15%

INFIERI 2016

4th Summer School on INtelligent signal processing for FrontlEr Research and Industry

January 23rd to February 3rd, 201

University of São Paulo, Brazil

Enjoy the School!

