Preface

I worked for about 30 years principally designing electronics for high-energy physics and ultrasound equipments for nondestructive testing (NDT). I decided to write this paper when I was invited to teach a course at UNICAMP, in Campinas, Brasil. The course was about electronics for high-energy physics. The aim of this paper is to point out the main problems in designing electronics to the students, by highlighting the concepts, the problems and avoiding tedious calculations. The writer is not a physicist but an electronic designer. The proposed problems for high-energy physics will be treated mainly from the point of view of electronics. This is an important result of this text. Hereafter it is assumed that the reader is familiar with basic electronic concepts as bias point, Bode-plots, equivalent circuits, op-amps and so on. It is expected that once the reader understands the concepts presented here, he can go ahead in analysis and design by himself. The analogue aspects of the design are principally treated, leaving as future the digital ones. I will appreciate any correction and any request for new items to add. My idea is to create a sort of “open source” paper for the benefit of all the students. Finally I apologize for my English but really I had no time for a better check of the first revision of the paper. However I hope it is plain and clear.

I want to thank my AGE Scientific shareholders Andrea Puccini e Marco d’Inzeo who supported me in this project and Giancarlo Sportelli, a brilliant researcher at Pisa University and a friend of mine, who has accepted to revise this paper. Today the revision ends at chapter 6 included.

I am writing this paper following the bright example of my teacher, professor S. N. Francaviglia, who taught me mathematics and student care with great commitment and passion.
1. INTRODUCTION

In my long time spent in designing electronics for high-energy physics I collaborate with experimental physicists mainly to answer to the following questions:

- Did anything interact with my detector?
- How much energy was left in the detector due to the interaction?
- When did the interaction occurred?

Today, the answer to these questions is provided by an intensive use of electronics. Answering the first one requires discriminators, the second one charge-to-digital converters and the third one time-to digital converters. After this time, my point-of-view remains that of an electronic designer and I am not able to talk about the deep detectors operations. For this reason I think it is very important to try a merging between the physicists world and the electronic engineers world. Electronics now play a fundamental role in experiments for high-energy physics. But the first experiments did not use electronics at all, for example we can think to the bubble chambers. These detectors worked with great mechanical equipments and cameras, resulting in very slow acquisition rates. In those days the most sophisticated electronic equipments was counters using nixies or tunnel-diode discriminators, coming from the best oscilloscope technology. Amplifiers (and the first digital networks) used thermionic tubes and so on. Today things are different, detectors are very fast and granular, and electronics have become irreplaceable and much more sophisticated. Nevertheless the structure of the experiments is still the same, as depicted in figure 1.1. Power supplies are not shown in the figure. For conventional electronics power supplies do not differ too much each other but it is not the case for detectors. They can require low-noise, high-voltages power supplies whose description would be a topic for more than a book. Moreover, detector power supplies are matter for specialised designers, usually not the same designers that work on trigger or front-end electronics for high-energy physics. So no more words about detectors supplies. My choice is to highlight the analogue problems against the digital ones since I think the analogue designer is an extinguishing kind of engineer.

![Figure 1.1](image_url) – Typical architecture of experiments

In the figure above each block represents a specilisation for an experimental physic researcher. All the other blocks, excluding the detector, involve electronics, featuring hardware and software. In the following sections each block will be explained. The aim of electronics is to acquire only interesting data and to suppress the useless data and noise. Rejecting useless data is also known as zero-suppression. Due to the evolution of technology, particularly in analogue to digital converters and in field programmable gate arrays, new architectures in experimental physics have been proposed. These are based on fully digital signal processing, as depicted in figure 1.2.
In experiments of the new generation the trend is to digitize the detector output, then digitally to process this signal to obtain the trigger, the zero-suppression and transfer data to host computer.
2. FRONT-END ELECTRONICS

Front-end electronics are the circuits that are directly connected to the detectors. These can include preamplifiers, discriminators, charge to digital converters, time to digital converters (TDC) and so on. Preamplifiers are used for the initial signal conditioning. There can be voltage, current or charge preamplifiers. **Voltage-preamplifiers** match the input and the output impedances to the detector output and to the following circuits. The key aspects in designing a voltage preamplifier are gain, noise and bandwidth. **Current-preamplifiers** behave as the voltage ones but they take as input the current output of the detector. **Charge-preamplifiers** integrate the detector output current. The output signal of a charge preamplifier is a kind of mathematical integration of the input signal. Its output rises to a peak value proportional to the input charge followed by a slow decay. The rise-time of a charge preamplifier output is the time required by the detector to release the charge. The most important aspects in designing a charge preamplifier are noise and sensitivity. The latter is the ratio between the peak output voltage and the charge input: its dimensions are Volt/Coulomb. **Discriminators** are electronic comparators. These circuits compare a signal with a threshold and assert their digital output when the signal exceeds the threshold. Usually a discriminator includes a one-shot circuit. The one-shot can be retriggerable (or not), resulting in an output whose width depends (or not) from the time that the input signal is over the threshold. The typical sensitivity of a discriminator is around a few mV over the threshold: this excess voltage is also called *overdrive*. There are different kinds of discriminators, the most common are: leading-edge, double-threshold and constant-fraction. Each one has an own characteristic and will be explained in the following sections. **Charge to digital converters** (QDC) integrate the current at their input during a fixed time. They performs an equivalent of the definite mathematic integration of the input current, which has the dimensions of a charge. For this purpose, a QDC needs a gate signal to set the integration time. Typically, the gate is active during the integration time. The result of the current input integration is then converted in a digital format and readout through the data acquisition system. The most important aspects in designing QDC are sensitivity, noise, resolution (i.e., number of bits) and conversion time. A typical sensitivity for a QDC is less than a picoCoulomb per bit, with 12 bits full-scale resolution or more. The conversion time can range from tenths of a nanosecond to milliseconds. **Time to digital converters** (TDC) measure the time elapsed between a start and a stop signal. This measurement is then converted in a digital format and read-out through the data acquisition system. Commercial TDCs can include many channels, they can be common start or common stop, i.e., all the channels can either start or stop upon arrival of a common signal. The most important parameters in designing TDC are sensitivity, accuracy, resolution (number of bits) and conversion time. A typical sensitivity of a TDC is tenths of a picosecond per bit. The conversion time can range from tenths of a nanosecond to milliseconds. The full range can be 12 bits or more: it depends strongly on the conversion method.
3. DATA-ACQUISITION

In the following data acquisition (DAQ) will be treated only by means of historical notes since the topic is too big and to be treated for the time being and a better explanation is left as future work. The only DAQ that will be explained more in details is the serial-chain, which has been used in the past for cosmic muon tracking. With DAQ we refer the hardware and software required for transferring data from the front-end to the host computer. This means that there is some hardware connected to the front-end at one side and to the host computer at the other side. In the “80s” there was the CAMAC, then the FASTBUS. The CAMAC is an electrical and mechanical standard: it specifies a crate hosting and powering the frontend cards, and the crate-controller. The crate-controller is connected to the host, usually a VAX (Digital Equipment). A CAMAC DAQ can transfer 24 bits in roughly one microsecond, using a non bidirectional TTL bus. The FASTBUS had shorter life, but it was a great enhancement in DAQ: it had an ECL bus and it could host very sophisticated crate controllers. The controllers were based on MC68000 CPUs and they were connected directly to disks. But the FASTBUS was too expensive and the more recent VME quickly took its place. The VME was born as military standard, it used bidirectional 32/64 bits TTL bus. A proprietary version was developed at CERN, which included some additional enhancements, and then other versions appeared on the market. Later on VXI, PCI, PXI, etc. were introduced that generated a lot of discussion about which was the best DAQ choice. The most recent approach is to connect the frontend to a host directly via Ethernet or LVDS. This is possible thanks to the advent of field programmable gate arrays (FPGA) that also embed very powerful hardware processors. Another great enhancement came with the Gigabit Ethernet that in the most recent versions (150 GBit and more) allow very high transfer rates. This is becoming comparable or even faster then the old direct transfer rate to disks.
4. TRIGGER

The trigger is the simplest method to suppress the useless data and noise. Triggering is also the first zero-suppression: when a significant interaction does happen the trigger circuit signals it to the front-end, which in response capture the event. The task must be accomplished as fast as possible, because of the difficulty that front-end electronics, often only analogue, have in taking memory of the input signal. For example, when a QDC is used, a gate signal must be issued shortly after the beginning of an event, in order to loose as few charge as possible during the integration. Therefore, the trigger circuit must be fast enough to ensure a prompt capture. Triggering in high-energy physics is very similar to what happens into an oscilloscope working in normal trigger mode: when the input signal crosses the threshold, a trigger starts the horizontal sweep, resulting in a coherent display of the input signal. In an analogue oscilloscope, a delay-line ensures proper timing between the trigger and the input signal. In modern experiments, when the event-rate is very high, there are more trigger levels. Each trigger level performs a suppression of non relevant events and arms the following trigger levels. Building a trigger logic is a very difficult task, it is more an art. For better understanding what is a trigger system let’s start from a simple example. Consider two detectors. Consider also that we want to count only coincident outputs, i.e., those coming from interactions that happen simultaneously in both detectors. The detectors could be, for example, two photomultiplier tubes (PMT) or Silicon Photo Multipliers (SiPM), i.e., two light detectors illuminated by two scintillators, as in figure 4.1. The scintillator converts incident ionization radiation in photons. This is a typical test-set for the characterization of a third one: the scintillator is introduced between the other two and the relevant count-rate and efficiency can be measured.

![Diagram of trigger example](image)

Fig. 4.1 – Simple trigger example

In figure 4.1 two equal channels process the signals from the detectors and the discriminators when the light hits. The very simple trigger circuit is an AND port whose output is active when both the inputs are active. This is a called coincidence circuit, it can accept double coincident events and reject single ones. A double event is often caused by a particle hitting both the scintillators, but there are other cases too: for example, there is a little probability that two particles hit independently the two scintillators at same time. Although this event is very rare, it can occur and must be accounted for. Starting from this very simple application, if we increase the number and complexity of the detectors involved in the experiment, the trigger complexity increases too. A muon telescope uses several floors of detectors, stacked on different levels, as is shown in figure 4.2. These detectors can be streamer tubes, resistive plate counters, scintillators and similar cheap detectors or, more recently, SiPMs. A muon crossing the telescope hat hits some levels can be tracked. The muon trajectory can be then reconstructed from the hits positions. The muon telescope generally includes a tracking system, that displays the muon tracks by showing the hits and it is described in section 12.
The trigger circuit depicted in figure 4.3 is a bigger version of the one in figure 4.1, it looks for coincidences among multiple detector levels by using again an AND port. Detector level \(n \) is considered by the trigger when the corresponding switch is turned on. When it is not used, the corresponding input to the AND port is connected to an always active level. The trigger circuits we have seen so far are simple combinatorial networks, but there are cases where more complex combinatorial networks are used as it is the case of the majority circuit. The majority circuit has \(K \) inputs. It outputs a signal when the number of active inputs is greater than a fixed \(N \), with \(N \leq K \). There are two ways for making a majority circuit: digital and analogue. The digital one is a logic network that can be designed using traditional digital design methods as the Karnaugh map. Combinatorial solutions are often better than synchronous due to their simplicity and speed. A majority circuit (\(K=4, N=3 \)) is showed in re 4.3.

\[C_{N,K} = \frac{N!}{K!(N-K)!} \]

Therefore, increasing \(K \) and \(N \), could make the number of required AND ports too big for a practical implementation. For example a majority \(K=10, N=6 \) requires 210 AND ports: even using a FPGA the construction of this circuit can be quite tedious and complex. Moreover, it has no-flexibility in changing \(N \). Another way to build the digital majority network is using a random access memory (RAM). The RAM is used as a look-up-table and this circuit was called magic-box. In the past the magic-boxes used fast ECL RAMs. They where more flexible then the above
solutions and allowed to implement programmable coincidences, anti-coincidences or majority circuits. A schematic of the magic-box is depicted in figure 4.4.

![Magic-box schematic](image)

Fig. 4.4 – Magic-box schematic

For the sake of clarity, the programming logic is not shown in the figure. Programming logic stores the data into the addressed RAM cells. The input signals compose the address of the memory. In return, the magic-box outputs the stored value. Addresses corresponding to valid trigger combinations output ones, all the others outputs zeros. In this way all the required combinations of inputs for trigger can be done by pre-computing and storing the RAM content. The analogue majority is the analogue version of the circuit. It uses current generators whose output is added on a resistor. Each active input turns on a current generator, so the resulting added current is proportional to the number of active inputs. The voltage across the resistor load is proportional to the number of active inputs and it can be estimated using a voltage comparator. The block diagram of an analogue majority is depicted in figure 4.5. Each input connects one current generator to the summing resistor Rs. When the voltage on Rs is greater than Vthreshold the comparator output becomes active.

![Analogue majority block diagram](image)

Fig. 4.5 – Analogue majority block diagram

For a majority of more than N active inputs, Vthreshold must be:

\[N \times \text{Rs} \times I_c < \text{Vthreshold} < (N+1) \times \text{Rs} \times I_c \]

Each active input increases the voltage on Rs of the quantity Rs Ic. When N inputs are active, the voltage on Rs results N Rs Ic. When N+1 inputs are active, the result is (N+1) Rs Ic. Vthreshold
must be set between these two values. Note that the figure 4.5 shows a simplified block diagram. A real circuit can be done using long-tails driven by Positive Emitter Couple Logic (PECL) logics. A long-tail is a pair of bipolar transistor used in linear circuits, e.g., as the input stage of an operational amplifier. It can also act as a very fast current generator including switch, provided that its design avoids saturation. Indeed, the PECL logic is very fast because it is designed avoiding saturation. A more realistic example of analogue majority is in the figure 4.6.

With use of PECL drivers and long-tails, the circuit can have a arbitrary number of inputs. To avoid saturation, the current flowing in the long-tails must be chosen properly. The voltage threshold range will change consequently. The required number of active channels N can be set using a variable resistor for setting Vthreshold. The pulses can be very fast, with short rise-time and fall-time. When these times are comparable with the propagation time along the signal paths the simple lumped parameter model cannot be used anymore. Transmission-line theory must be used instead and the designer must implement proper impedance matching in order to avoid reflections. The last circuit mentioned in this section is the mean-timer. Although mean-timers are now used in other fields they are an interesting application example of current switches. The mean-timer is used to obtain the mean arrival time in a pair of photo-detectors illuminated by the same scintillator. It is used to calculate the point of incidence of a particle on a scintillators, since its output is proportional to the mean arrival time between the two input pulses. The scintillator is a rectangular section bar with light collectors at both the far ends. The setup is shown in figure 4.7. As shown in the figure, an incoming particle hits the scintillators, then the scintillators light reaches the two extremities after T1 and T2, respectively. The mean-timer measures the mean between times T1 and T2 and its output gives an estimation of the hit position x.

![Fig. 4.6 – Example of analogue majority](image)

![Fig. 4.7 – Pair of PMTs lighted by the same scintillator](image)
The simplified mean-timer circuit is shown in the figure 4.8. The waveforms of the involved signals are shown in figure 4.9.

In figure 4.8 more events are depicted. The circuit work using a capacitor as current integrator. It integrates two equal currents, each switched on by the input signals. The voltage across the capacitor is a ramp:

\[V_c = \frac{Q}{C} = \frac{I_c \cdot t}{C} \]

The Ic value doubles when both inputs become active since, i.e., the ramp slope changes. The total time required by the ramp to cross a fixed threshold depends linearly from the mean arrival time.

Let’s call k the slope corresponding to the current of one generator:

\[k = \frac{dV_c}{dt} = \frac{I_c}{C} \]

Let’s consider the time Ttot required to Vc for crossing Vthreshold when a single current generator is on. This is shown in the Waveform A in figure 4.9. This time must be set equal to the time required from the light for crossing the whole scintillator length. This is Ttot = T1 + T2. So Vthreshold can be defined as Vthreshold = k \(T \) tot = k \(T1 + T2 \). The voltage on the capacitor can be also defined as Vc = k \(T2 - T1 \) + 2 k \(Tm - T \). Tm can be derived equating Vthreshold to Vc as in the following:
\[V_c = k \cdot (T_2 - T_1) + 2 \cdot k \cdot (T_m - T_2) = V_{\text{threshold}} = k \cdot T_{\text{tot}} = k \cdot (T_1 + T_2) \]

So \(k \cdot (T_2 - T_1) + 2 \cdot k \cdot (T_m - T_2) = k \cdot (T_1 + T_2) \). The final result is \(T_m = T_1 + T_2 \). The mean arrival time is \(T_m/2 \) so the circuit outputs a pulse after double the mean arrival time. Connecting an output of the light detectors to a TDC’s start signal, and the mean-timer output to its stop, the resulting counts are proportional to the x coordinate of the incoming particle. In waveform A of figure 4.9 is the case of particle hitting close to an extremity of the scintillator, in waveform B the particle hits an intermediate position, and in waveform C the hit is exactly in the center. Superimposing the three waveforms in figure 4.10, and letting the left end the start signal, the x position can be calculated from the output.

Fig. 4.10 – Relations between x position and mean-timer output

If the particle is in the left, the TDC counts the time of the waveform A. If it is in the first third from left, the time is in the waveform B. Particles in the middle correspond to waveform C. At two thirds it is again B. At the right end it is again A. There is an ambiguity in the right or left position respect the centre of the scintillator but it can be solved by sampling with the start signal the status of the other input, as depicted in figure 4.11.

Fig. 4.11 – Solving right/left ambiguity

If input B arrives before A, the output is active, therefore the particle is in the right side of the detector. If A arrives before B, the output is not active. The realization of the above circuit has some troubles: stability of currents, precision of threshold and so on. The practical current switch showed for analogue majority can be successfully used here. Today, analogue mean-timers are not used any-more, since the cost of TDCs has become very low and they allow to calculate the x coordinate digitally: the two detector outputs are connected to two start inputs of a TDC and the stop signal is achieved with a delayed coincidence of the inputs.
5. VOLTAGE AMPLIFIERS

These circuits are used for signal amplification. It seems to be a simple task but it involves a lot of different requirements that can require different solutions. The main requirements of an amplifier can be many: input and output impedance, gain, bandwidth, noise, output power and so on. Moreover, an amplifier should drive an output load so the circuit must be designed with a proper output voltage range. Designing an amplifier is not straightforward, it strongly depends on the target application. The first choice to take is to use discrete components or integrated circuits. Discrete components are required when the circuit has a structure that cannot be found in integrated amplifiers. This is the case of low-noise designs where a non symmetrical structure is required or with very fast amplifiers when the available op-amps are not fast enough. Modern integrated op-amps can solve almost any problems but their choice is critical. This paper cannot cover all the amplifier-related topics. However, a sort of selection tree by parameters is shown below to help selecting the right one given a target application.

Bandwidth

High bandwidth (hundreds of MHz) can be achieved by using current-feedback op-amps. These amplifiers don’t work as the voltage-feedback amplifiers, that are usually studied in basic electronic courses. Current-feedback op-amps don’t follow the constant gain-bandwidth product (GBW) rule, they are designed for an optimal feedback resistor: the one connected between inverting input and output. The value of the optimal feedback resistor is clearly specified in the data-sheets. Using a different value could result in oscillations or bandwidth degradation. The gain of the circuit is adjusted setting the value of another resistor in the feedback network. Therefore, the feedback resistor cannot be replaced by a capacitor. For this reason a current-feedback integrator can be achieved only with particular configurations (e.g., De Boo). Although current-feedback amplifiers have these limitations, they are often used in active filters. Their noise performances are exceptionally good. The current-feedback configuration can be generally built only using bipolar transistors and the fastest devices cannot be powered with relatively high voltages. The fastest amplifiers, that are used in other fields as radio-frequency, are made with discrete devices. Speaking about high-bandwidth amplifiers, it’s worth mentioning composite amplifiers. These are designed with a dual path for the signal: one for the low frequencies and the DC, the other for the high frequencies. This is done with two different amplifiers optimized each for the proper task. This is an old technique used, e.g., in the vertical channels of some oscilloscopes.

High input impedance

MOSFET or JFET input stages must be used when a high input impedance is required. When the whole amplifier is not designed using discrete components, a MOSFET or a JFET input op-am can be used. These amplifiers generally don’t have large bandwidth and they are available only in voltage-feedback configurations.

Gain

Current-feedback amplifiers, due to their constraints on feedback resistor, work properly in a small range of gain. If more gain is required, they must be cascaded. A voltage-gain amplifier can be more flexible and its bandwidth can be easy shaped. In the discrete components field there are Darlington, high-hfe and now also SiGe transistors. These are intrinsically high-gain devices and can be used for high-gain amplifiers design.
Noise

Noise is the biggest problem in the design of amplifiers for high energy physics. There are many techniques for noise reduction, these were specially developed in charge preamplifiers design. The main rule is the ones used in the noise-figure calculation: the noise performance of a circuit depends on the noise and the gain of the first stage. So this must be designed with maximum gain and minimum noise with a proper choice of the first amplifier device. Moreover the noise performance of an amplifier depends on the source and the input impedances. In audio amplifier for example there are special for optimum signal-to-noise ratio: the less noisy source must have impedance given from the voltage noise and current noise ratio. This results in using proper transformers. Also, in radio-frequency amplifiers the best noise-figure ratio is searched and in this field also a proper impedance matching is needed. Another noise reduction technique is in distributed amplifier: adding signals it is a linear addition, adding noise it is a quadratic addition in squared RMS voltage. This results in a square radix improvement of the resulting signal to noise ratio. This results also in the use of asymmetrical (i.e., not differential) amplifiers in low-noise amplifier when the source is single-ended. This is the case of the majority of the detectors. A good DC coupled amplifier can be a composite one. A good choice is a very fast low-noise device in the high-frequency path and a precision low-noise amplifier in the low-frequency path. The cut-off frequency must be set in compliance with the 1/f noise corner of the high-frequency amplifier. Many fast devices have low-noise performance only over the frequencies when the 1/f noise become flat: over the 1/f corner. More about the 1/f corner can be found in the basic electronics book, anyway something more will be explained in the following.

Example of simple DC coupled amplifier

In the following, a generic example of a DC coupled amplifier is presented, which is based on AD8009 integrated current-feedback devices. The schematic is in the figure 5.1, all resistor values are in Ohm.

![Figure 5.1 - Example of 10X gain DC coupled integrated amplifier](image)

The proper resistor feedback Rs for a 10X fixed gain must be set following the device datasheet. As stated above, current-feedback op-amps don’t follow the current-feedback GBW rule, so each one has a proper resistor feedback for the desired gain. AD8009 has Rf = 200Ω. Also in this kind of amplifiers the Rs resistor follows the usual rule:

\[\text{Gain} = 1 + \frac{R_f}{R_s} \]

So if Gain = 10 then \(R_f = 22.2 \)Ω. It seems simple but there are a few pitfalls hidden in the circuits that require some tricks. The first is how to connect a coaxial cable to the output. The output impedance is near 0Ω therefore there is a mismatch in the amplifier at the end of the line. This
would result in multiple backward reflections. Moreover, a fast amplifier is often unstable with such a load. A workaround is to put an output resistor connected to the op-amp output as in figure 5.2.

![Fig. 5.2 – Output matching](image)

Again it seems a simple solution but the gain, measured at Vload, now becomes 5X, i.e., the load voltage range is halved. Therefore we need to add a new amplifier stage, with gain 2X and a following resistor Ro for proper output line matching. The load voltage range is always half the original one but the gain is 10X again. There is another hidden problem: the two stages of the circuit have good probability to oscillate. Therefore an additional Ri must be inserted as shown in figure 5.3 to avoid oscillation. Also don’t forget to bypass the op-amp power supplies, which re not shown in the figure 5.3.

![Fig. 5.3 – Final drawing of an example of 10 X fast amplifier](image)

Some notes about the circuit in figure 5.3:

- the two stages have different gains, the first is 10 X, the second is 2 X, according to the rule of the maximum gain first;
- the final gain results 10 X because it is halved by the matching resistor Ro;
- the dynamic range of the output is halved as well by Ro;
- the resistor values of the two stages are different, according with the recommended values in the data-sheet;
- the resistor Ri prevents instability and oscillations, in the following there is a little explanation of this.

This amplifier circuit is a little example that can be recycled in many applications. The bandwidth of the circuit depends on the first stage bandwidth and the noise. Due to the use of current-feedback amplifiers, the thermal stability and the total output offset voltage could be significant. This can be recovered using the circuit in figure 5.4.
The resistor used for offset recovery must be large enough to have no influence on the gain value. Special attention must be paid to noise, since it could be introduced from ripple on +Vs and –Vs. A little more about Ri: when an emitter-follower with a fast bipolar transistor is done, it can oscillate, especially at high collector currents. This is an argument treated in some basic books, e.g., as in “Microelectronics” edited by Millman-Halkias. Some fast bipolar transistors, when increasing the collector current, tend to have a negative base resistance. This results in oscillation as in a RLC circuit with negative R values. These oscillators are often used in microwaves, for example. In order to avoid the oscillations, a little resistor (e.g., 27±33 Ω or slightly higher) is placed in series with the base of the transistor and oscillations stop. Due to the little resistor value, the bandwidth is practically unaffected. In the same way this can happen in the output stage of a fast op-amp. The little resistor Ri can “mask” the following load to the potentially unstable circuit thus avoiding oscillations. This is the case described in the following. Oscillations can be often observed using a scope probe on a fast amplifier output pin. The oscillations stop if a little 33 Ω resistor is inserted in series with the probe tip. Due to the high impedance of the probe, the bandwidth will be considerably reduced, but anyway some signals can be observed. This is obviously not the proper use of a scope probe but it can be an emergency solution. The best way is to use an active probe with very short ground connection.

Example of composite amplifier

National Semiconductor’s OA-07 application note is a great source of practical circuits based on current-feedback op-amp. The circuit in the figure 5.5, taken from there, is a non-inverting composed amplifier. The CLC401 is no longer available, but the circuit can be recalculated for newer devices, that must be generally powered with lower voltages. For example, the AD8009 in the previous example accepts ±5 V maximum. Also the OP-27 also should be replaced by a newer precision rail-to-rail op-amp since it is not suitable for ±5 V supply. A good choice could be the Analog Devices AD8638. I want to precise that every designer uses the components best known from him, and for this reason I used many times the AD8009. There are many other devices sourced from other manufacturers, I don’t receive sponsorship from Analog Devices!
Increasing the speed of the op-amps reduced their voltage supply range. This is because faster technologies are obtained by reducing the dimensions of the integrated circuits. This is particularly true for the modern fastest analogue-to-digital converters (ADC). The higher the resolution (i.e., the number of bits) the stricter is the requirement on signal-to-noise ratio. For this reason modern ADCs are designed with true differential input stages. Using differential signals is an example of doubling signal and noise, which results in a 2X signal and \(\sqrt{2} \)X noise, i.e., in an improvement of \(\sqrt{2} \)X on the signal-to-noise ratio. Fully-differential amplifiers are available for driving properly these ADCs. These are designed with great bandwidth and low noise and there are a lot of literature available about TI website.

Fully-differential amplifiers

As stated above, there are no general rules in amplifier design, each design is a world where the requirements must be weighted and all the relevant considerations must drive the designer’s choices. The first choice is about using integrated or discrete components: if proper integrated op-amps are available, this is the best choice. Conversely if there are particular requirements, e.g., regarding noise or speed, a discrete component amplifier can be designed. This task requires a little experience. The job must start from the selection of the circuit’s architecture, then the bias point calculations and finally it must end with the noise and speed performance analysis. A good simulator can be useful but a good designer must always have a feeling of what the voltages and currents do inside the circuit. Simulation is a task that requires experience since a good simulator can also give some weird results if it is not carefully setup. Start your design with some well-known amplifier typologies and check if the simulation results agree with the theory, then go ahead.
6. DISCRIMINATORS

Discriminators are used to state if a searched signal is present in the noise. This is done using an electronic comparator. This is the first analogue-to-digital converter: the one-bit converter. The output state of a comparator is true when the voltage at its positive input is greater than the voltage at its negative input. If it is lower instead, the output state of the comparator is false. In this paper it is assumed that the reader is familiar with electronic comparators, which are described in any basic electronics book. The input signal is connected to one of the comparator inputs, a fixed voltage to the other. The latter is called threshold. Generally the comparator is followed by a one-shot circuit that can be retriggerable or unretriggerable the former is named updating, the latter not-updating. The main characteristics of a discriminator are:

- sensitivity: the lowest signal that causes an output;
- speed: the highest operating frequency of the circuit;
- delay-time between input and output;
- jitter: the time fluctuation in the threshold crossing;
- dual-pulse resolution: the minimum time between two input signals that can produce two separate output pulses;
- hysteresis: optional circuit useful for rejecting spurious oscillations due to noise.

Discriminators can be designed in ways that optimise one or more characteristic above, as speed or jitter. If the output pulse width must be the time-over-threshold plus a fixed time, the discriminator is said to be updating otherwise it is said to be not-updating, i.e., the output pulse width is fixed.

Leading-edge discriminators

This is the simplest discriminator circuit, it is depicted in figure 6.1.

Fig. 6.1 – Leading-edge discriminator

The circuit can work for positive or negative input pulses. The hysteresis can be inserted by closing the corresponding switch. If hysteresis is on, the output is feed back to the input with the same polarity, thus enhancing the threshold crossing and obtaining the typical memory effect. The one-shot becomes not-updating when the output inhibits the start signal. The main problem of the
leading-edge discriminator is its low timing precision. This is due to the jitter caused by the fluctuations of the input signal amplitude, as illustrated in figure 6.2.

![Fig. 6.2 – Jitter in leading-edge discriminator](image)

The jitter of the leading-edge discriminators can be reduced using two other techniques: the double-threshold and the constant-fraction discriminators. The simplest to use is the dual-threshold.

Double-threshold discriminators

Double-threshold discriminators reduce the jitter using a low-threshold for accurate timing and an high-threshold for validating the arrival time. A simplified scheme of the double-threshold circuit is illustrated in figure 6.3.

![Fig. 6.3 – Double-threshold discriminator](image)

The circuit in figure 6.3 is a simplistic version that allows to discriminate only positive input signals. The circuits for setting polarity, hysteresis and updating are not shown, but they can be implemented in the same way as for the leading-edge discriminator. The double-threshold discriminator works by capturing the time with the low threshold level. This results in reducing jitter due to input signal amplitude fluctuations. In figure 6.4 it is shown as a double-threshold discriminator works.
The output timing is the low-threshold crossing time delayed by the fixed value “delay” in the figure 6.3. The time from the beginning of the input pulse and the low threshold crossing is proportionally reduced so the jitter due to input signal amplitude fluctuations is strongly reduced too. The lower is the low-threshold value, lower is the jitter but the low-threshold cannot be too close to zero Volts because of noise. But the main job of a discriminator is to state if a signal crosses or not a fixed threshold, i.e., the high-threshold. This is done by using the high-threshold comparator. However this occurs at a later time than the low-threshold crossing. For this reason a delay line is required: the low-threshold crossing is delayed so the coincidence between the two signals can take place and the output timing is the time at which this coincidence occurs. The double-threshold discriminator is easy to adjust and use, it can reduce the output jitter but for this issue the best choice is the constant-fraction discriminator, when usable.

Constant-fraction discriminators (CFD)

These circuits were initially proposed to improve timing evaluation using PMTs. There are some historical papers describing the circuit. In FDS the input signal is combined with a delayed replica of itself. The resulting signal has a zero-crossing time that does not depend theoretically from the input signal amplitude. As for double-threshold discriminators there is a high threshold, called the arming threshold, and an adjusting zero-crossing threshold, called the walk adjust. The schematic of the CFD is depicted in figure 6.5.
In figure 6.5 the schematic is again very simplified, it is depicted only for positive input signals. The circuit for setting polarity is not shown but it can be implemented as for the leading-edge discriminator. Hysteresis and updating are generally not used. The constant-fraction discriminator works by capturing the time at the zero-crossing. This happens when the signal at positive input of walk comparator equals the signal at negative input. If the attenuator reduces of α the input signal, and the delay-line delays it of ΔT, the inputs of the walk comparator are:

$$V_{\text{walk}+}(t) = V_{\text{in}}(t - \Delta T) \quad \text{and} \quad V_{\text{walk}-}(t) = \alpha V_{\text{in}}(t)$$

So the walk trigger occurs when $V_{\text{walk}+}(t) = V_{\text{walk}-}(t)$, i.e., at the time t_w when $V_{\text{in}}(t_w - \Delta T) = \alpha V_{\text{in}}(t_w)$. It can be seen by inspection that changing the amplitude of V_{in} the t_w does not changes. The zero-crossing graphical evaluation is depicted in figure 6.6. In the figure, the delay is T and $\alpha = 0.5$. The arming threshold crossing can occur at any time along the rising edge of the input signal. The delay-line at the walk comparator output is used for proper time compensation of the zero-crossing delay. Using this device, the zero-crossing time is always delayed after the arming crossing. Therefore in the constant-fraction discriminator, the output time is the zero-crossing time plus a fixed time. As stated above, t_w is unaffected by the input signal amplitude, but this is true only if it maintains the same shape when the amplitude changes. This is true when the amplitude changes within a reasonably small range, it is for example with PMTs. In this hypothesis, the jitter would be theoretically zero if it were not for the noise. In this circuit, the jitter comes from the noise and from the input offset voltage of the walk comparator. In order to reduce the offset error at the zero threshold, the walk adjust is included.
As stated above, the delay to be used in walk must be set depending upon the input signal rise-time. For this reason a typical CFD has external delay-line connections or internal jumper setting for walk delay. Typical values of α are 0.3 and generally this is a fixed value. Typical settings are for zero-crossing at 30% of the input signal rise-time. The resulting final jitter can be easily less than 100 ps. Note that reducing α reduces also the zero-crossing signal. This is a practical limitation to its value. The same consideration is valid for the walk delay. The reader may want to evaluate by himself the best setup for obtaining a zero-crossing with maximum rise-time and amplitude. That setup will be the best operating condition for a practical comparator device and will result in the best jitter performances. Double-threshold and constant-fraction discriminators have very similar performances. The double-threshold is easiest to use since it does not require delay adjust but its output jitter will depend from the input signal rise-time.

Other constant-fraction discriminators

In the literature there are other ways to evaluate a zero-crossing time independent from the input signal amplitude. All of these use the time t_w resulting from an equation in the form of:

$$f_1(V_{in}(t_w)) = f_2(V_{in}(t_w))$$

If f_1 and f_2 are linear with the amplitude V_{in}, the time t_w is again independent from it. For example, the functions $f_1(V_{in}(t)) = V_i(t)$ and $f_2(V_{in}(t)) = \alpha \int V_i(t) \, dt$ can drive the two walk comparator inputs, in this case a constant-fraction-like discriminator is obtained. The choice of f_1 and f_2 depends on the designer fantasy.

Single-channel analyzer

A single-channel analyzer (SCA) can be thought as a combination of two leading edge discriminators. This circuit is used in spectroscopy for counting the incident particles with a selected energy in a detector. The typical spectroscopic chain output is a pulse whose height is proportional the energy released in the detector by the incident radiation. The SCA is done using a
pair of leading-edge discriminators, one with the threshold set for minimum energy level to count, the other for maximum. Only the pulses whose amplitude is between the two thresholds are output by the SCA to be counted in the following stage, thus resulting in the counting of events of energy in the selected range. A simplified schematic of the SCA is illustrated in figure 6.7.

Only the input pulses that are under the upper energy threshold after the delay cause the one-shot output. Today modern spectroscopy analyzers have almost totally replaced these old circuits. However in a designer’s life it can be useful to know and to be able to recycle some forgotten good ideas.
7. Charge Preamplifiers

Charge-preamplifiers integrate the detector output current. Charge-preamplifiers output signal is a kind of mathematical integration of the input. The circuit is used for detectors with very low output signals, specially when the signal to noise ratio is low as in drift chambers or in spectroscopy detectors. When the signal voltage is high, as in PMTs output, there are different ways to process detector output charge. Charge-preamplifier operations is the figure 7.1.

![Charge-Preamplifier Operations](image)

Fig. 7.1 – Charge-preamplifier operations

It is simple to see that the output is an indefinite integral also called antiderivative of the input current. The transfer-function of the circuit, in terms of Laplace transform, results:

\[
\frac{V_u}{I_{det}(s)} = \frac{R_f}{R_f \cdot C_f \cdot s + 1}
\]

The input and output waveforms, the detector output current and the output voltage of charge-preamplifier are in figure 7.2.

![Charge-Preamplifier Waveforms](image)

Fig. 7.2 – Charge-preamplifier waveforms

The output ramps up when Idet is on (i.e., Tdet), then decays to the initial quiescent value. Decay time-constant is \(T_f = R_f \cdot C_f\). If Tdet is very small than Tf, there is a negligible discharge and the so called ballistic error is negligible. The output voltage is:

\[
V_u = \frac{I_{det} \cdot T_{det}}{C_f} = \frac{Q_{det}}{C_f}
\]

S stated above the charge-preamplifier is a current integrator. Sensitivity of the circuit equals the reciprocal of feedback capacitor. Rf and Cf values are constrained by two requirements:

- high sensitivity needs low Cf value;
- long Tf requires high value of Rf \(\cdot\) Cf, but Cf must be small then Rf must be high.
The input bias current of the op-amp goes through \(R_f \) then the output quiescent value can result out of op-amp output voltage range, causing saturation. Real op-amp open-loop gain and dominant pole frequency can result inadequate to approximate the op-amp ideal behaviour. A suitable op-amp must have low input bias current, high GBW product and low noise: the choice could be only a modern high performance JFET input device. This dramatically cuts the number of suitable op-amps. For these reasons and for noise, the typical charge preamplifier are done using discrete components. Proceeding in the analysis the equivalent circuit of the op-amp must be considered, as shown in figure 7.3. This allows a simple and more accurate calculation of the real performances. Following the considerations about the input bias current, the input impedance of the op-amp is supposed infinite. This allows also a simpler analysis of the circuit. A real op-amp in the circuit can behave quite different due to finite input impedance, to finite input capacitance and to the possible other time-constants. These could be not far enough from the principal time constants used in the analysis.

Fig. 7.3 – Op-amp simplified model in a charge preamplifier

Evaluating the circuit transfer-function:

\[
\frac{V_u}{I_{det}(s)} = \frac{Av(s) \cdot R_f}{Av(s) + 1 \cdot R_f \cdot C_f \cdot s + 1}
\]

By inspection this behaviours as the ideal only when \(Av(s) \gg 1 \). For a common charge preamplifier sensitivity can be 1 mV/pC and \(T_f = R_f \cdot C_f \) can be 100 s then \(R_f \) and \(C_f \) must be:

- \(C_f = 1 \) pF;
- \(R_f = 100 \) MΩ.

For an high performance unity-gain stable op-amp \(Av(s) \) is supposed to be:

\[
Av(s) = \frac{Av_0}{1 + t_A \cdot s}
\]

where \(t_A = \frac{1}{2 \cdot \pi \cdot f_p} \)

Unity-gain stability requires only a pole in \(Av(s) \). Optimistically \(Av_0 \approx 10^5 \) and \(f_p \approx 50 \) Hz. Consider a high performance JFET input op-amp. The JFET input op-amps are the proper choice for very low input bias current then \(R_f \) value can be high as required. In figure 7.4 the ideal and the real (dotted) transfer-functions are drawn, using a mathematic CAD.
The ideal transfer-function has one pole, the real has two. Substituting the $Av(s)$ value in the transfer-function the following equation is obtained:

$$
\frac{Vu}{Idet}(s) = \frac{Av_o}{Av_o + 1} \cdot \frac{Rf}{\frac{t_A}{Av_o + 1} \cdot s + 1} \cdot \frac{1}{Rf \cdot Cf \cdot s + 1}
$$

The added pole in the transfer-function cuts the output rise-time: calculating the time domain response of the transfer-function it is clear. Letting:

$$
A = \frac{Av_o}{Av_o + 1} \\
t_s = Rf \cdot Cf \\
t_{op} = \frac{t_A}{Av_o + 1}
$$

Since the time-domain results are useful for the final signal-to-noise ratio calculation, the real op-amp transfer-function is evaluated. It can be rearranged for Laplace anti-transform:

$$
\frac{Vu}{Idet}(s) = \frac{A}{t_{op} \cdot s + 1} \cdot \frac{Rf}{t_f \cdot s + 1}
$$

Typical detectors output requiring charge preamplifier is a constant current pulse $Idet$. The pulse-width is $Tdet$. For time-domain output evaluation we use a double current step input. The first has amplitude $Idet$, the second has the same amplitude but negative and it is delayed by $Tdet$. The output voltage Laplace transform, with an input current step, can be written as:

$$
Vu(s) = \frac{Idet}{s} \cdot \frac{A}{t_{op} \cdot s + 1} \cdot \frac{Rf}{t_f \cdot s + 1} = \frac{K1}{s} + \frac{K2}{s + \frac{1}{t_{op}}} + \frac{K3}{s + \frac{1}{t_f}}
$$

For evaluating anti-transform $K1$, $K2$ and $K3$ must be found:

$$
K1 + K2 + K3 = 0 \\
K1 \cdot (t_{op} + t_f) + K2 \cdot t_{op} + K3 \cdot t_f = 0 \\
K1 = Idet \cdot A \cdot Rf
$$
Resulting:

\[
K_1 = \text{Idet} \cdot A \cdot R_f \\
K_2 = \frac{\text{Idet} \cdot A \cdot R_f \cdot t_{op}}{t_f - t_{op}} \\
K_3 = \frac{\text{Idet} \cdot A \cdot R_f \cdot t_f}{t_{op} - t_f}
\]

Finally evaluating anti-transform:

\[
\frac{K_1}{s} + \frac{K_2}{s + \frac{1}{t_{op}}} + \frac{K_3}{s + \frac{1}{t_f}} \Leftrightarrow (K_1 + K_2 \cdot e^{-\frac{t}{t_{op}}} + K_3 \cdot e^{-\frac{t}{t_f}}) \cdot u(t)
\]

As stated before the input signal must be considered as the sum of two step functions, delayed by the time used from the detector to release charge Tdet. Substituting K1, K2 and K3 in the equation finally the time-domain output is:

\[
V_u(t) = \text{Idet} \cdot A \cdot R_f \cdot ((1 + \frac{t_{op}}{t_f - t_{op}} \cdot e^{-\frac{t}{t_{op}}} + \frac{t_f}{t_{op} - t_f} \cdot e^{-\frac{t}{t_f}}) \cdot u(t) - (1 + \frac{t_{op}}{t_f - t_{op}} \cdot e^{-\frac{t}{t_{op}}} + \frac{t_f}{t_{op} - t_f} \cdot e^{-\frac{t}{t_f}}) \cdot u(t - Tdet))
\]

The same method applied to the transfer-function of the ideal charge preamplifier results in the ideal time-domain response shown in figure 6.1:

\[
V_{u\text{\,ideal}}(t) = \text{Idet} \cdot R_f \cdot ((1 - e^{-\frac{t}{t_{op}}}) \cdot u(t) - (1 - e^{-\frac{t - Tdet}{t_{op}}} \cdot u(t - Tdet))
\]

This is the time-domain response calculated using the simplified op-amp model, it results the same as before but with A = 1 and \(t_{op} \rightarrow 0\). Indeed, these are some of the assumptions for an ideal op-amp. Please note the contributions with time-constant \(t_{op}\); these have minus sign and tends to lower the rise-time. Finally, assuming \(T_{det} = 0.5\ \mu s\), \(\text{Idet} = 1\ \mu A\) and \(C_f, R_f, A_{vo}\) as above, the two time-domain responses can be drawn. In figure 7.5 the integrating charge transient (i.e., \(T_{det}\)), in figure 7.6 all the decay transient. The ideal output is solid, the real is dotted:

![Fig. 7.5 – Initial transient of output](image-url)
Fig. 7.6 – All transient of output

Note: input charge is $Q = \text{Idet} \cdot T_{\text{det}} = 1\mu A \cdot 0.5\mu s = 0.5\text{pC}$. $C_f = 1\text{pF}$ then, as stated above, the output peak value is:

$$V_u = \frac{Q_{\text{det}}}{C_f} = \frac{0.5\text{pC}}{1\text{pF}} = 0.5\text{V}$$

$T_f = R_f \cdot C_f = 100\text{M}\Omega \cdot 1\text{pF} = 100\text{μs}$. In a single pole circuit the output value decays at about 35% of peak value after T_f and this is easily visible in figure 6.6.

Noise evaluation

Noise output of a charge preamplifier depends upon the detector capacitance. The starting point for a good understanding of this topic is the noise model of an op-amp, shown in figure 7.7. For the sake of clarity in this example the op-amp is supposed ideal. The noise contribution is only the voltage noise source. The current noise is neglected by the above considerations on the input bias current: typically, a low input bias current device has negligible current noise.

![Charge preamplifier noise simplified model](image)

Calculating the noise transfer-function:

$$\frac{V_u(s)}{E_n} = 1 + \frac{R_f \cdot C_d \cdot s}{R_f \cdot C_f \cdot s + 1} = \frac{R_f \cdot (C_f + C_d) \cdot s + 1}{R_f \cdot C_f \cdot s + 1}$$

The equation has a pole and a zero. Letting f_p and f_z:

Rev. 2 27
\[f_p = \frac{1}{2 \cdot \pi \cdot Rf \cdot Cf} \quad f_z = \frac{1}{2 \cdot \pi \cdot Rf \cdot (Cf + Cd)} \]

The above equation can be rewritten:

\[\frac{V_u}{E_n}(f) = \frac{jf}{f_z + 1} \]

Where \(f_p > f_z \). Increasing the detector capacitance \(Cd \) the difference between the two frequencies increases too. Bode plot of the noise transfer-function is depicted in figure 7.8.

![Bode plot of noise transfer-function](image)

Fig. 7.8 – Output noise in a charge preamplifier using an ideal op-amp

The output noise is evaluated using white voltage noise input. The final value of noise gain is:

\[\frac{V_u}{E_n}(\infty) = \frac{Cf + Cd}{Cf} = 1 + \frac{Cd}{Cf} \]

The output voltage noise is linearly increased by the \(Cd \) value due to the effect of \(Cd/Cf \) ratio. For a real device the noise power under \(1/f \) corner must be considered and the simplified op-amp model must be substituted with a more realistic one.

![Op-amp simplified model](image)

Fig. 7.9 – Op-amp simplified model for noise evaluation

Calculating the noise transfer-function:
\[\frac{V_u(s)}{En} = \frac{Av_0 \cdot (Rf \cdot (Cf + Cd) \cdot s + 1)}{Av_0 \cdot (Rf \cdot Cf \cdot s + 1) + (t_A \cdot s + 1) \cdot (Rf \cdot (Cf + Cd) \cdot s + 1)} \]

It is not simple matter to evaluate by inspection the effect of the op-amp \(Av_0 \) and \(t_A \) then it is done using a mathematic CAD. Then it is compared with the one obtained using an ideal op-amp. The two results are shown in figure 7.10.

![Noise transfer-function for ideal and real op-amp](image)

Fig. 7.10 – Noise transfer-function for ideal and real op-amp

Solid line is the previously evaluated transfer-function, dotted is by the real op-amp. In both cases the noise power at frequency lower the 1/f corner is neglected. The noise peak value is the same then the ideal op-amp case. The real op-amp seems to be more advantageous. Signal-to-noise ratio can be evaluated by signal output peak value and output noise RMS ratio. The noise value to be used in the signal-to-noise ratio formula must be evaluated in the frequency domain. The value results integrating the square modulus of the noise transfer-function. So the high cut frequency of the noise transfer-function lowers the final value. Output peak value of signal must be calculated following the signal transfer-function above. Output noise evaluation is possible following two ways: the frequency-domain integration or the time-domain evaluation. The first requires the integration of square modulus of noise transfer-function, as stated above. This is very difficult in analytic form but it is easy in numeric form. The time-domain evaluation of noise can be done using the approximated method depicted in a following chapter.

Charge-preamplifiers test

Charge-preamplifiers test is gain and signal-to-noise ratio evaluation. The gain evaluation requires a simple setup: a charge injector and a pulse generator. The charge injector is shown in figure 7.11.

Fig. 7.11 – Charge injector

When the pulse generator outputs a trapezoidal waveform a current injection take place along the rising and falling edges. The circuit waveform are shown in figure 7.12.
Following the capacitor law:

\[Q_{\text{inj}} = I_{\text{inj}} \cdot \Delta T = Ci \cdot \Delta V = Ci \cdot V \]

Considering the edges, \(V \neq 0 \) only along these. Charge injection happens there. Setting the rise and the fall time results in setting injection charge time. Setting Voltage results in setting injected current. The time \(T_d \) between the edges must be much greater than charge-preamplifier decay time \(T_d \). This allows ending discharge between another edge occurs. Complete setup for testing a charge preamplifier gain is in figure 7.13.

The injected charge is known by \(C_i \) and by pulse generator output setting. Charge preamplifier output can be traced using an oscilloscope. Measuring the output signal peak value and dividing it by the injected charge the ratio \(\text{Voutput}/\text{Input charge} \) is evaluated. The ratio has dimensions of mV/pC. Signal-to-noise ratio is the other fundamental requirement for a charge preamplifier. For signal-to-noise ratio evaluating, RMS output noise must be measured. The setup to be used is shown in figure 7.14.
Input capacitor simulates the detector capacity and, as stated before, this affects the output noise. Moreover, modern digital oscilloscopes can evaluate the RMS value of a traced signal. Once the RMS output voltage is measured it can be divided by the gain obtaining the equivalent input noise charge. Finally signal-to-noise ratio is evaluated dividing the typical charge injected by the detector by the equivalent input noise charge of the preamplifier. Often the equivalent input noise charge only is evaluated. In other cases it is also converted in electrons dividing charge input by electron charge value. Typical values of equivalent noise charges are hundreds of electrons for 50 pF detector capacity (Si, Ge) and one thousand for 400 pF detector capacity (drift chambers).

V. Radeka charge preamplifier

One of the most popular charge preamplifier circuit was initially proposed by V. Radeka. It is done using discrete components. It is done around a folded cascade, as shown in figure 7.15.

A simplified equivalent circuit is shown in figure 7.16. There are the circuit building bricks highlighted. The reader will be driven in the recognition of these. The amplifier is a folded cascode with a JFET input device and a RF PNP transistor used in common base configuration. The folded cascode is loaded with an active load, this is a current generator (i.e., current sink) done with a NPN transistor. An emitter follower stage is used for obtaining a low output impedance.
A further simplification is performed and showed in the right side of figure 6.16. The final equivalent circuit results quite simple. Rsink and Csink are the cascode output loads. By inspection the circuit is an op-amp provided only of the inverting input, the open-loop gain $A_v(s)$ is:

$$A_v(s) = \frac{g_m \cdot R_{sink}}{1 + R_{sink} \cdot C_{sink} \cdot s}$$

The great idea is the use of few discrete components for building an op-amp. This is particularly suitable for use in charge-preamplifiers. Since the JFET input device, the input impedance is high and the input bias current is low. The JFET is also a low noise device. Noise analysis can follow the same way previously used for real op-amp: the noise source is a voltage source and it must be inserted between the input node and the JFET gate. Typical values in the circuit are:

- $g_m \approx 45000$ mS (BF862);
- $e_n \approx 0.7$ nV/√Hz;
- $R_{sink} \approx 100$ kΩ;
- $C_{sink} \approx 15$ pF.

Note the equivalent circuit is really simplified: the output stage time-constant is neglected and it must be considered only when stability of the circuit is evaluated. Particularly when the feedback network loses its dominant pole. The resistor between the drain of JFET and the emitter of PNP transistor is for stability, as written above regarding stability of emitter follower. It is typically 33. The real value of a 1 pF capacitor is always affected by the layout. The precision of gain value depends upon the precision of feedback capacitor. A greater capacitor value can lower the layout effects. There is a simple way to use a greater value capacitor in the feedback network, this results in less layout dependency. This circuit is shown in the figure 6.17.
Fig. 7.17 – Using a greater capacitor in feedback network
8. **CHARGE TO DIGITAL CONVERTERS (QDC)**

QDC integrates the current at their input along a fixed time. For this purpose a QDC needs the gate signal issuing the integration time. Typically, the gate is active during the integration time. Optionally, QDC has a clear input signal for rejecting conversion and resetting its internal circuits. The QDC is done by two sections: the charge integrator and the analogue-to-digital converter. The charge integrator performs the input current integration then the analogue-to-digital converter samples its output and converts its value in a digital format. The charge integrator is typically an analogue circuit. Modern trends are numerical integration of input charge after input voltage gigasampling. This is possible by lower cost and greater availability of very fast analogue-to-digital (ADC) converters and high-performance FPGA. However, today analogue techniques in some applications are irreplaceable: for example in space applications, where not all the components are space-grade available, or where a great number of channels is involved, so too many ADC are required and the costs are not acceptable. Then digital integration will be treated in future papers and here the analogue integration only will be explained. There are mainly two analogue techniques for performing charge to digital conversion: charge-to-voltage and charge-to-time. The first uses an ADC for digital conversion, the second uses a time-counter for digital conversion. Decreasing the cost of ADCs the first substituted the second. The second is anyway the less expensive one but it requires a longer conversion time. It has other advantages as easy integration of a great number of channels using a FPGA for implementing many counters. In the figure 8.1 the typical QDC block-diagram using charge-to-voltage conversion is shown. For the sake of clarity the block are supposed ideal.

![QDC block diagram](image)

Fig. 8.1 – QDC block diagram

The gate signal connects the integrator input to the signal. Once gate signal is ended the input switch is open again. Now the integrator output is stop at its final voltage and the ADC has time to perform numerical conversion. After this the output digital datum is sent to data-way for readout and a clear is issued for resetting integrator to its initial status. The ADC has n-bits resolution. The command signal is gate, all the other signals are internal and all issued from gate. This is evidently a charge-to-voltage type QDC. The timing diagram of the signals is in figure 8.2.
In figure 8.2 is highlighted the conversion time. This is one of the most important characteristic of the ADC and consequently for QDC. It is intended as the time elapsed between the end of gate and the time when the datum is available to the data-way. The circuit depicted is very simplified and it works when particular conditions are accomplished: the input current must be greater than the input bias op-amp and the charge injected by the analogue switches must be constant. Generally the second is not true in particular when the analogue switches are done using CMOS devices. These inject charge during switching. This occurs through the gate-drain capacitance and it is not a linear phenomenon since it is depending upon the drain-gate voltage. The other way to do analogue switches is using long-tails, as previously seen in analogue majority section. These have little non-linearity problems due to the hfe dependency by the collector current. Anyway generally this is negligible. Naturally the designer’s choice depends by the circuit application and by his experience. This is one of the first issue to be analyzed when starting a new QDC design. In the following some examples of integrators are explained. In some old applications a charge preamplifier and two sample-and-hold circuits was used to integrate the input current between a start and a stop time. The circuit is shown in figure 8.3. At Tstart the sample-and-hold A holds the baseline value, at Tstop the sample-and-hold B holds the output of the charge preamplifier. The difference between the two values is related to the charge integrated between Tstart and Tstop.

Fig. 8.2 – QDC timing diagram

Fig. 8.3 – Analogue evaluation of charge
The timing of the signals in the circuit is shown in figure 8.4.

![Charge-preamplifier QDC timing diagram](image)

Fig. 8.4 – Charge-preamplifier QDC timing diagram

In figure 8.4 the decay-time of the charge-preamplifier is oversized. The designer must be carefully to the maximum time elapsed from input signal and closing gate time. In this time the output decay cannot exceed the value of one LSB of the ADC resolution, otherwise a resolution loose can occur. The A sample-and-hold can also reject previous charge arrived from the detector or slow fluctuations of the charge-preamplifier output due to low frequency noise. The circuit above is built using a charge-to-voltage converter. Another charge-to-voltage circuit, often used with PMTs, is shown in the figure 8.5. This circuit has been produced and used in thousands of channels. These was done using op-amps or discrete components. The input voltage, intended as input current in the termination resistor, is converted using an op-amp or a discrete components similar circuit. Then a capacitor is used as integrator. The gate is done with a long-tail and the clear with a MOSFET.

![QDC using voltage-to-current converter](image)

Fig. 8.5 – QDC using voltage-to-current converter

For the sake of clarity the circuit depicted uses an op-amp. The resistor Re bias the voltage-to-current stage output and causes a non-zero readout with no input signal. This value is called “pedestal” and it is not a defect but it is used for checking proper circuit operations. The voltage-to-
current converter is a typical op-amp application, it is well described by many integrated-circuit suppliers in many linear application notes. When the gate is closed the current coming from input conversion is discharged to ground, otherwise this flows into the capacitor causing a voltage output change. This follows the previously reported equations. When the gate-on time is elapsed the capacitor stays charged and the ADC can convert this voltage to a numeric value. Finally a clear pulse resets the circuit to its initial conditions. The output buffer must have great input impedance for avoiding capacitor discharge due to its input bias current. The timing of the signals in the circuit are about the same that in the figure 8.2. The circuit can be easily modified to work as a charge-to-time converter. In this application the ADC is not used and a time-counter is used, as shown in figure 8.6.

![Figure 8.6 – QDC using charge-to-time converter technique](image)

The current generator I_{dsc} is used for discharging capacitor to the clamping voltage set by the diode. This generator is always active and its current is subtracted to the pedestal current. This circuit works as the previously described until the gate become off. Then the voltage at the output buffer ramps-up to the clamping voltage. All the time when the output voltage is under threshold is digitally evaluated counting the time-base pulses arrived to the counter. Then the datum is available to the data-way and the counter can be reset. I_{dsc} must be set small enough to allow the counter overflow at full-range input. A very fast modern counter, into a FPGA, can work at some hundred of MHz. The required QDC resolution can be 12 bits or more so the time needed by the counter for overflow can be as long as 10^{-6} s when time-base is 400 MHz. A fast ADC can convert at 12 bits of resolution in ns. From this consideration the longer conversion-time of a charge-to-time converter versus a charge-to-voltage one. Obviously in a FPGA, that is cheaper then a fast ADC, many counters can be fitted realizing a sort of scale economy for a great channels number. In the figure 8.7 the signal timings of the charge-to-time converter are shown.
In figure 8.7, the clamping voltage is neglected. This is not a problem when understanding how the circuit works. If the total charge in C is Q the time required for discharge or conversion time is:

\[\text{Conversion time} = \frac{Q}{I_{dsc}} \]

The charge-to-voltage converters described above use standard ADC. In this components there is the problem of differential nonlinearity (DNL). It is intrinsically due to design and this problem does not afflicts the conversion done in charge-to-time operations. DNL is due to the difference between the bins width. The interested reader can find exhaustive description also in Wikipedia. Obviously in a time-to-digital converter the base-time pulses to be counted can be considered all with the same width, neglecting jitter. Moreover the jitter can influence a single pulse but counting a long pulse sequence the DNL can arise only if the oscillator frequency changes significantly along the measurement.

Sliding-scale conversion

When very low DNL is required, for example in spectroscopy, a proper technique is used. It is called sliding-scale conversion. Since the DNL of an integrated ADC depends upon the point of the range where the conversion occurs, E. Gatti and P. F. Manfredi proposed this technique. In figure 8.8 is shown the block-diagram of the sliding-scale converter.
It tricks the ADC converting the same input value in a pseudo-random different point of the ADC range. So the DNL of the device is reduced distributing itself on many bins. The cost is a little reduction of the converter’s input range and a more complicated circuit but with sliding-scale NLD can be drastically reduced. For each conversion cycle the pseudo-random generator outputs a digital value. This is converted in an analogue voltage by the digital-to-analogue converter (DAC) and added to the input signal. Then the ADC converts such a voltage and the digital pseudo-random value is subtracted. Please note: the NLD measurement is very time-expensive since it requires a lot of events to be acquired. One calibrated ramp-generator is connected to the circuit and it is randomly sampled. The acquired values are uniformly distributed in amplitude and an histogram is evaluated. The maximum difference between the histogram bins amplitude is related to the mean bin amplitude. A good converter can result in 1% of NLD or better and a resolution of 12 bits. In this case, for good statistic practice, the chi-square test requires to perform hundred of thousand of acquisitions.
TDC measures the elapsed time between a start and a stop signals. The TDC can be done using digital and analogue or fully digital techniques. The first are done by two sections: the time converter and the analogue-to-digital converter. The time converter can perform a time-to-amplitude or a time-to-time conversion. The time-to-amplitude conversion is done integrating a constant current along the time between the start and the stop signals the final value of integration is the converted numerically using an ADC. The time-to-time conversion is also performed charging with a constant current a capacitor but then discharging it with a very smaller current. As seen in charge-to-time conversion the time elapsed for discharging is longer then that for charging proportionally to the two current ratio. For this converter the numeric conversion is performed measuring the discharge time. This technique was used in the past for the same problems of the charge-to-amplitude and now it is used only is space applications. In figure 9.1 is depicted a time-to-amplitude converter.

Fig. 9.1 – Time-to-amplitude converter TDC

In figure 9.2 are shown the timing diagram of the time-to-amplitude TDC.

Fig. 9.2 – Time-to-amplitude TDC timing diagram

In this case, also following the capacitor charge equations, the final capacitor voltage is:
Capacitor voltage = \(\frac{I \cdot \Delta T}{C} \)

Where \(T \) is the time elapsed between the start and the stop signals leading edges. The time-to-time converter is depicted in figure 9.3.

![Time-to-time converter TDC](image)

Fig. 9.3 – Time-to-time converter TDC

Also in this circuit the current generator \(I_{dsc} \) is used for discharging capacitor to the clamping voltage set by the diode. This generator is always active and its current is subtracted to the charging current \(I \). This circuit works as the previously described until the leading edge of the stop signal occurs. Then the voltage at the output buffer ramps-up to the clamping voltage. All the time when the output voltage is under threshold is digitally evaluated counting the time-base pulses arrived to the counter. Then the datum is available to the data-way and the counter can be reset. \(I_{dsc} \) must be set small enough to allow the counter overflow at full-range input. Also for this circuit the considerations regarding resolution and conversion time are the same made for the charge-to-time converter. But in this case the longer conversion-time of this converter is the trailing idea since the time that to be measured can be of the order of hundred of nanoseconds with resolution of tenth of picoseconds. This cannot be measured counting a time-base with a digital counter. For this the time-to-time converter is a sort of “time-expander” and with this expansion a short time become long enough to be counted digitally. In figure 9.4 the signal timings of the time-to-time converter are shown.

![Time-to-time TDC timing diagram](image)

Fig. 9.4 – Time-to-time TDC timing diagram
Clamping voltage is neglected also in figure 9.4. Again this is not a problem for understanding how the circuit works. The capacitor voltage V_c after the unknown time T_u is:

$$V_c = \frac{(I - I_{dsc}) \cdot T_u}{C}$$

The conversion time is

$$\text{Conversion time} = \frac{C \cdot V_c}{I_{dsc}} = \frac{(I - I_{dsc}) \cdot T_u}{C}$$

So the conversion time to unknown time ratio is:

$$\frac{\text{Conversion time}}{T_u} = \frac{(I - I_{dsc})}{I_{dsc}} = 1 - \frac{I}{I_{dsc}}$$

Setting $I/I_{dsc} \approx 200$ and the time-base frequency at 100 MHz the resolution of the RDC is 50 ps, for an input range of 100 ns the conversion time results about 20 μs.

Fully digital TDCs

The simplest digital TDC, a stopwatch, is a counter of a time-base pulses along the unknown time to measure. This is showed in figure 9.5.

Fig. 9.5 – Stopwatch

A modern counter, using sub-nanosecond logic, could be driven with frequencies as high as 1 ÷ 2 GHz resulting in a resolution of 0.5 ÷ 1 ns as faraway from the 50 ps of the time-converter techniques. In the past, when the fastest counters worked at 100 ÷ 200 MHz, a delay-line interpolator was realized. It is shown in figure 9.6.
The schematic in figure 9.6 is very simplified: the counter overflow is not considered and the bus width are not specified. Although there are important highlights:

- the Gray counter, whose output changes only a bit every clock-cycle, is the best choice against metastability, this is balanced by the decoder complexity;
- the number of taps should be a power of two, it results in a finite number of bits added by the interpolator;
- the processing of the numbers frozen into the latches can be slowly, also off-line, so the fastest sections of the circuit are the latches.

In this way 3 or more bits was added to the digital counter resolution enhancing the TDC resolution by 8 or more. Today this circuit is no longer used but it is an important milestone to understand modern digital TDC. These are always built around a delay-line as in depicted above but they are integrated into chips and uses a delay-line loop as shown in figure 9.10.
The input-output delay of a CMOS port depends upon its supply voltage. The circuit has the same loop of a Phase locked loop so it controls the supply voltage of the ports adjusting the total delay. These ports are integrated on the same silicon in a dual or more cascaded chains. One of these chains, the upper in figure 9.10, is used as reference. The same supply voltage is used for all the chains and the equality of delays is guaranteed by the geometric symmetry and by the presence on the same chip. The integration allows also a greater speed for counters and latches resulting in a resolution very close to a time-converter.
10. **PASSIVE-SPLITTERS AND ATTENUATORS**

Many circuits described above need to connect input or output signals using matched lines. This requires special accessories for splitting or attenuations of signals.

Splitting signals

This is the case when one signal must be sent to two or more circuits with proper impedance matching. The technique to use are different depending from the bandwidth of the signals. In radio-frequency, from long-waves to microwaves, these circuits work on phasing of the signals and they cannot work from DC. This disadvantage is offset by lower attenuation of the signals. Unfortunately in high-energy physics this is not the case so this circuits will not be treated in this paper. Anyway the interested reader can look for “power-combiner” in bibliography. In the electronics for high-energy physics the signals can be DC coupled or AC coupled but in this case the low cut-off frequencies cannot be covered by the power-combiners. So the circuits to use are the passive-splitters. These can match the impedances from DC to some GHz but with more attenuation and these are cheaper then the power-combiners. In figure 10.1 is the schematic of a n-outputs passive splitter.

![Diagram of a generic n-outputs passive splitter](image)

Fig. 10.1 – Generic n-outputs passive-splitter

The passive-splitter is a generic one with one input and n-outputs, each port is matched to the some impedance. By the symmetry of the circuit the internal resistors have the same value. The Rs value must be evaluated for proper impedance matching. By the symmetry the equivalent schematic is in figure 10.2.
Fig. 10.2 – equivalent circuit of generic n-outputs passive-splitter

For proper matching must be the input resistance Rin:

\[
R_{in} = R_s + \frac{R_s + R_t}{n} = R_t
\]

Solving the equation results:

\[
R_s = \frac{n - 1}{n + 1} \cdot R_t
\]

The equation above is the matching condition for the passive-splitter. In this case the attenuation of the circuit is:

\[
\frac{V_u}{V_{in}} = \frac{R_t}{(n+1) \cdot R_s + R_t} = \frac{1}{n}
\]

Please note the choice of Vin as input voltage instead of Vs: operating with matched lines the easiest voltage to measure is when the signal is terminated on the proper impedance Rt. So connecting for example a signal to an oscilloscope with input termination 50 \(\Omega \) this measure Vs after the partition between Rt and Rt, it is half Vs that equals Vin.
Attenuating signals

This is the case when a signal must be sent from generator to load with attenuation and impedance matching. The circuit to be used is named attenuator. It can be done using two kinds of resistor networks. In figure 10.3 the two networks are shown.

The most important parameters of an attenuator are:

- attenuation;
- matching impedance;
- bandwidth.

The attenuation and the matching impedance are evaluated using the schematic in figure 10.4.

\[
\text{Av} = \frac{V_u}{V_i} \quad \text{or in dB} \quad A_{\text{dB}} = 20 \cdot \log_{10} \left(\frac{V_u}{V_i} \right)
\]

In the following table there are the equations for evaluate Ra and Rb when the attenuation and the matching impedance Rt are known.
The bandwidth of an attenuator cannot be easily evaluated since it depends upon the parasitic components and the layout. Building a 20 dB home-made attenuator using surface-mounted-resistors and doing very short connections can easily obtained 1 GHz bandwidth. Commercial attenuators must be purchased considering impedance, attenuation, bandwidth and accuracy.
11. A NUMERICAL METHOD FOR SOLVING CIRCUITS

Today many simulation tools are available. These can evaluate bias-point, time and frequency domain analysis. The post-layout and signal-integrity analysis can be performed. A good radio-frequency tool can also solve Maxwell’s equations and tell the electromagnetic field around the circuit resulting in complete simulations of transmission lines and antennas on a printed-circuit board. There are some situations where the use of such a tools can result quite intricate: for example evaluating signal-to-noise ratio in a charge preamplifier. In case of using SPICE in the time-domain the designer must generate an input plus noise signal then sample it and use it as input stream to the simulator. In these simulations statistics and visual animations are very important so the noise generation and simulation must be performed many times. It can really result very intricate. Instead of this the following method can be used. It was used successfully by my shareholder Andrea Puccini and me for designing the ICARUS preamplifier. It starts from the Laplace transform of the transfer function of a circuit. Then this is transformed in a time-domain recursive equation. A data-input sequence is obtained sampling the input signal an adding it to the noise generated on-line by a software noise-generator. This data-stream is used as input for the recursive equation obtaining directly the output data. For many simulations the repetition of the input signal is enough: the noise is real-time generated and the output statistics can be evaluated. The strength of the method is in its simplicity and power. Using a recursive equation don’t set limits to the input sequence length and the CPU time is very short.

Evaluating the recursive equation from transfer-function

For simplify the method explanation all the theoretical arguments will be omitted, the Shannon theorem will be the only used. The reader that is interested to theory can start studying the z-transform that has the same basis. The starting point is an RC circuit, as shown in the figure 11.1. This is a simple first-order low-pass filter.

Evaluating transfer-function:

\[
\frac{V_u}{V_i} (s) = \frac{1}{R \cdot C \cdot s + 1}
\]

Where \(s\) is the Laplace operator. Mathematicians will forgive me for all I am writing, this is equivalent to a derivative operator:

\[
s \cdot f(s) \leftrightarrow \frac{df(t)}{dt}
\]

When \(f(t)\) is sampled every \(Ts\), becoming a discrete-time array of values \(f_n\), this can be approximated with:
Now the signals \(V_i(t) \) and \(V_u(t) \) can be transformed in the same way in the two discrete-time array of values \(V_{in} \) and \(V_{un} \). These can be used in the transfer-function after substitution of \(s \) variable with the operator above:

\[
V_u \cdot (R \cdot C \cdot s + 1) = V_i
\]

The equation becomes:

\[
R \cdot C \cdot \frac{V_{un} - V_{un-1} + V_{un} = V_{in}}{T_s}
\]

This can be rearranged:

\[
V_{un} \cdot \left(\frac{R \cdot C}{T_s} + 1 \right) - V_{un-1} \cdot \frac{R \cdot C}{T_s} = V_{in}
\]

And finally:

\[
V_{un} = \left(\frac{R \cdot C}{R \cdot C + T_s} \right) \cdot V_{un-1} + \frac{T_s}{R \cdot C} \cdot V_{in}
\]

An input signal array evaluated on \(N \) values is the array \(V_{in} \) with \(n = 0 \ldots N-1 \). This can be used in the recursive equation for evaluating \(V_{un} \). Please note that the value \(V_{un-1} \) has index out of range when \(n = 0 \). This problem results from the basic network theory: the circuit includes a capacitor so the differential equations governing the circuit requires an initial condition. This is the capacitor voltage initial value. So the value of \(V_{un-1} \) must be chosen by the initial output voltage. If at initial time the capacitor was charged at the initial voltage \(V_0 \) the output voltage is \(V_0 \) and \(V_{un-1} = V_0 \). A simple program that reads the \(V_{in} \), take memory of \(V_{un-1} \) evaluating the new \(V_{un} \) is very easy to write, as few rows of C-code. In the following there are many examples of these programs. The example above is very simple but it can be extended to more complex circuits. When in the transfer-function the \(s \) variable appears in a power more than one the substitution with a time-discrete derivative can be reiterated:

\[
s \cdot f(s) \leftrightarrow \frac{1}{T_s} \cdot (f_{n} - 2 \cdot f_{n-1} + f_{n-2})
\]

And generically:

\[
s^n \cdot f(s) \leftrightarrow \frac{1}{T_s} \cdot \sum_{i=0}^{m} (-1)^i \cdot \binom{m}{i} \cdot f_{n-i}
\]

Now the question is about the applicability field of the method. Without complex analytical analysis, that are reserved to mathematicians, the Shannon theorem can be considered. There is a reasonable possibility that the method works properly if the sampling time is very smaller (20 ÷ 1000 times) then the minimum time-constant involved in the circuit and in the input signal. As in every other simulation technique only the experience of the user can help to understand if all is properly working. The user should start with simple circuits comparing the results with the theoretical and let his experience grow up. The readers that have familiarity with the z-transform
can observe that the automatic transform between the Laplace variable and the z variable produces the same results:

\[s \leftrightarrow \frac{1}{T_s} (1 - z^{-1}) \]

Evaluating the equations at the end of time-domain anti-transform the recursive equation is the same. Proceeding with substitution:

\[
\frac{V_u}{V_i}(z) = \frac{1}{R \cdot C \cdot \frac{1 - z^{-1}}{T_s} + 1} = \frac{T_s}{R \cdot C + T_s \cdot R \cdot C \cdot z^{-1}}
\]

A z-domain transfer-function is in the form:

\[
\frac{V_u}{V_i}(z) = \sum_{i} a_i \cdot z^{-i} \quad \text{so it is} \quad V_u(z) \cdot \sum_{j} b_j \cdot z^{-j} = V_i(z) \cdot \sum_{i} a_i \cdot z^{-i}
\]

This can anti-transformed substituting:

\[V(z) \cdot z^{-k} = V_{n-k} \]

The equation above becomes:

\[V_{u_n} \cdot (R \cdot C + T_s) - V_{u_{n-1}} \cdot R \cdot C = V_{i_n} \cdot T_s \]

That is the same result obtained using the proposed method. The z-transform allows the use of other substitutions between the operators s and z. One of this is bilinear transformations that is used when some filter must be designed preserving ratios between frequencies. Further details are beyond the scope of this paper but this transformation is anyway the following:

\[s \leftrightarrow \frac{2 \cdot (1 - z^{-1})}{T_s \cdot (1 + z^{-1})} \]

With the first-order low-pass filter it has been shown how to evaluate a recursive equation starting from the transfer-function in Laplace transform domain. With this recursive equation a time-domain array of samples can be easily obtained from an array of samples of the input voltage. It is easy to apply this method to the voltage or to the current output by the detector evaluating electronics’ output. In the following a C-code evaluating results for n array of data is shown:
The code is really simple and it can be easily rearranged for recursive operations.

Evaluating signal-to-noise ratio of a circuit

The method can be used to evaluate signal-to-noise in a circuit. What is needed at this point is a recursive noise evaluation. The noise must have white Gaussian statistics so a simple evenly distributed random number generator cannot work. Fortunately there is an algorithm that can transform such an array of in one with white Gaussian statistics: the Box-Muller transformation. More details on this are left to mathematicians. In the following equation is depicted the transformation from two random numbers RND(seed) and a Gaussian value with mean value μ and standard deviation σ. RND(seed) means a random generated number with pseudo-random sequence of seed (seed):

$$ N(\mu, \sigma) = \mu + \sigma \cdot \cos(2 \cdot \pi \cdot \text{RND(seed)}) \cdot \sqrt{-\ln(\text{RND(seed)})} $$

So an array of N samples can be easily evaluated executing N-times the Box-Muller transform. Please note that the transformation can be used on a full array resulting in an array of noise or it can be applied sample by sample and adding noise to input incoming data. Generally electronic noise is supposed to be white with mean value equal to zero (μ = 0). The standard deviation must accomplish the statistics of noise given by the device datasheet. The typical equivalent input noise voltage of a JFET is shown in figure 11.2.

![Fig. 11.2 – Typical equivalent input noise voltage of a JFET](image-url)
As the reader can see there is a sort of corner frequency on the left. It can be evaluated fitting the high slope section of the graphic and getting the frequency where the fit intercepts the line of constant value of noise. Anyway this is usually specified by the supplier in the datasheet, specially when the device is particularly suitable for low-noise applications. For the purposes of this paper the noise spectral contribution is that is over the corner frequency, the under corner is negligible and it is interesting only in very low-frequency applications. So finally the noise spectral density e_n to use is that in the plane section of graphic. For example a very low-noise JFET has e_n = 0.7 nV/√Hz, please note this is not the case of the figure 11.2. In Box-Muller transform a proper σ value must be used for equivalent results in time-domain. For ICARUS experiment front-end design the following equation was used for evaluating σ from e_n and sampling time Ts:

$$\sigma = e_n \cdot \sqrt{\frac{1}{2 \cdot Ts}}$$

It derives from equivalence of RMS value after sampling process compared with RMS evaluated integrating noise power spectrum. In the following a C-code for evaluating a noise array.

```c
void w_noise (float *data_out, int len)
{
    int i;
    for (i=0; i<len; i++)
        data_out[i]=(float)(cos(2*M_PI*((double)(random(1000)+1)/1000))*
                         sqrt(-2*log((double)(random(1000)+1)/1000)));
}
```

After the noise sequence is generated each sample must be multiplied by σ, the resultant array must be added to the sampled input signal array. These data are ready to be processed with the recursive equation resulting by transfer-function transforming.

A more generic circuit transfer-function example

So far almost all the useful information about the use of the presented method are disclosed. The topic can be deepened with some more examples. The recursive equation can be evaluated for a complex network starting from the transfer function of all the circuit. It involves that if the circuit can be decomposed in a cascade of simpler parts each of these can have a proper recursive equation. Then cascading the single sections is simply to evaluate in sequence each section’s recursive equation. This is done calling in sequence each C-function. For this reason in the following a C-function evaluating a generic second order filter is presented. This can used to solve a lot of circuits. When it does not cover the full transfer-function it can be evaluated by the reader or this generic one can be used cascaded.
void filter_1(float *data_in, float *data_out, float T, float A, float B, float C, float D, float E, int len)
{
 int i;
 float a1,a2,a3,a4,a5;
 a1=(D/T+2*E/(T*T));
 a2=(E/(T*T));
 a3=(A+B/T);
 a4=(B/T);
 a5=(C+D/T+E/(T*T));
 data_out[0]=(a3*data_in[0]/a5);
 for (i=2; i<len; i++)
 data_out[i]=(a1*data_out[i-1]-a2*data_out[i-2]+a3*data_in[i]-a4*data_in[i-1])/a5;
}

The code also is really simple and it is written for working on arrays input-output. It can be easily rearranged for true recursive operations.

Charge-preamplifier application

The schematic of the circuit is depicted in figure 11.3.

![Circuit schematic](image)

Fig. 11.3 – Circuit used for charge-preamplifier application

First of all the recursive equation must be evaluated. Supposing the following is the transfer-function of the op-amp:

\[
Av(s) = \frac{A}{\tau \cdot s + 1}
\]
The signal (detector output current I_d) and the noise transfer-functions must be evaluated:

$$V_{u_{Id}}(s) = \frac{-R_f \cdot A}{1+A} \cdot \frac{R_f \cdot (C_f + C_d) \cdot \tau \cdot s^2 + (R_f \cdot C_f + R_f \cdot C_d + \tau) \cdot s + 1}{1+A}$$

This is the I_d signal transfer-function, the corresponding recursive equation is:

$$V_{u_{n}} = \frac{(R_f \cdot C_f \cdot (Ts + A \cdot Ts + 2 \cdot \tau) + R_f \cdot C_d \cdot (Ts + 2 \cdot \tau) + Ts \cdot \tau)}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot V_{u_{n-1}} +$$

$$+ \frac{-R_f \cdot C_d \cdot (C_f + C_d) \cdot \tau}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot V_{u_{n-2}} +$$

$$+ \frac{-R_f \cdot A \cdot Ts^2}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot I_{d_{n}}$$

For the noise:

$$V_{u_{En}}(s) = \frac{A}{1+A} \cdot \frac{(R_f \cdot (C_f + C_d) \cdot s + 1)}{1+A}$$

This is the E_n transfer-function, the corresponding recursive equation is:

$$V_{u_{n}} = \frac{(R_f \cdot C_f \cdot (Ts + A \cdot Ts + 2 \cdot \tau) + R_f \cdot C_d \cdot (Ts + 2 \cdot \tau) + Ts \cdot \tau)}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot V_{u_{n-1}} +$$

$$+ \frac{-R_f \cdot (C_f + C_d) \cdot \tau}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot V_{u_{n-2}} +$$

$$+ \frac{(Ts + R_f \cdot (C_f + C_d) \cdot A \cdot Ts}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot E_{n_{n}} +$$

$$+ \frac{-R_f \cdot (C_f + C_d) \cdot A \cdot Ts}{(1+A) \cdot Ts^2 + R_f \cdot C_f \cdot (Ts + A \cdot Ts + \tau) + R_f \cdot C_d \cdot (Ts + \tau)} \cdot E_{n_{n-1}}$$

So, after evaluating the two arrays, one for the I_d samples and the other for the noise samples, these can be used for evaluating the two $V_{u_{n}}$ arrays. Then the two must be added for having the final output samples array. The sequence can be continually repeated resulting a sort of oscilloscope effect of the output signal. This was performed from my shareholder Andrea Puccini and me for ICARUS charge preamplifier and for FROST experiment. The sequence to be repeated is depicted in the following:
• clear screen;
• evaluate signal array;
• clear old trace if present;
• evaluate noise array;
• add to previously evaluated signal;
• plot on the screen;
• wait some time and return to clear old trace.
12. SERIAL-CHAIN FOR MUON TRACKING

As stated in the chapter 3 only one data-way will be explained in this paper. This was used in old readout system for streamer tubes, now it is the one used when there is a lot of detectors whose status hit or not hit must be read. For example in muon telescope tracking. Using serial-chain the status of all the detectors are registered at trigger-time in a shift-register. After the shift-register is serially readout. Generally during readout are saved only the information relevant to hit detectors. The serial-chain readout is shown in figure 12.1.

The trigger circuit sets the flip-flop causing a parallel load to the shift-register. This loads in all the shift-register’s flip-flops the values of the discriminators connected to the relevant parallel inputs. The output state of each discriminator is active if the detector was hit in the one-shot time. So in the shift-register are registered ones and zeros, the ones are corresponding to the detector that was hit. After trigger the microcontroller reads the status of the load line, it detects that an event occurred and start readout. It consists in a burst of clock-cycles, one for each shift-register cells. Each clock-cycle causes at the serout line the output of a cell in the register. For each clock-cycle the microcontroller reads the cell of one cell and store it in an array. At the end of the burst the microcontroller clears the flip-flop resetting the system. The data are now available to clients through the external port. The timing of the circuit is in figure 12.2.

Fig. 12.1 – Serial-chain for muon tracking

Fig. 12.2 – Timing in serial-chain readout system
The “serin” input to the shift-register can be used for two purposes: one for cascading other shift-register in the chain, the other for filling the register with a test pattern sent from micro-controller. The test pattern then can be readout for testing the digital integrity of the readout system. A long shift-register can also be done using many smaller cascaded. This permits a layout divided in many cards each one hosting a slice of the readout system. Each slice can be complete of detector, discriminator and shift-register. In this way the micro-controller can be put anywhere, together to the trigger system.
13. **LED PULSING**

In many applications a short light pulse is required. This can result driving a LED with a short pulse. The LED behaviours as a diode so it requires time for switching on and off. This time is required by the junction for carriers filling or depletion. In the diode model it results as a capacitor in parallel to the diode. For a LED a forward voltage V_f versus I_d characteristic is specified. There is a maximum I_d value and there is a maximum power dissipation for such a device. Maximum V_f is corresponding to maximum I_d and typically maximum power is:

$$P_{d_{\text{max}}} = V_{f_{\text{max}}} I_{d_{\text{max}}}.$$

$I_{d_{\text{max}}}$ and $P_{d_{\text{max}}}$ should not be exceed when driving LED. Peak and duty-cycle value I_d and P_d can be found in the LED datasheet. Driving a LED with a voltage source results in charge or discharge of junction capacitor through the generator internal resistance. This has not a linear behaviour since the time-response has exponential. The LED lights from a V_f value smaller than $V_{f_{\text{max}}}$ and the wavelength of emitted light depends upon I_d. To avoid this the best way is to drive a LED with a constant current source. The simplest LED driver circuit is in the figure 13.1.

![Fig. 13.1 – Simplest LED driver](image)

The signal PULSE, active low, switches off the NPN transistor. When the transistor is off the current generator (i.e.: the op-amp, the voltage reference V_{rf} and the PNP transistor) feeds the LED diode and it lights. When it is on such a current flows in the NPN transistor and LED diode does not lights. The two diodes at the LED cathode allow reverse LED voltage and discharging of its junction. The Schottky diode between the base and the collector of the NPN transistor avoids the saturation allowing short light pulses. The LED brightness can be adjusted with the current (i.e.: adjusting reference V_{rf} or emitter resistor of current generator). This circuit properly works in a lot of circumstances, but the LED current is not the same when switching on or off. It can be a little trouble but for very fast light pulses another configuration is better. It is in the figure 13.2. Setting $I_{d_{\text{on}}} = I_{d_{\text{off}}}$ the LED is driven with the same on and off current. Remember the long-tail used as current switch. The clamping diode in parallel with the LED becomes on when the LED is off and its junction is discharged. It serves to limit the reverse LED voltage.
Compared to the simplest LED driver this circuit has another advantage: the LED has cathode connected to ground. The circuit can also be redrawn for LED anode connected to ground. This allows LED driving via a transmission line like a shielded cable. In this case at least at one side the line must be properly terminated matching its characteristic impedance. When the LED is a little power device (i.e.: $V_f/I_f > 50$Ω) the line termination can be at the LED side using a resistor. The value resulting from this resistor in parallel with the LED dynamic resistance must match the transmission line impedance. Obviously a little power will be dissipated by such a resistor but this avoids LED re-lights due to the reflected pulses. When LED is on the termination impedance of transmission line, at the generator side, is very high due to the current generator high output impedance. It becomes quite low when the LED is off and the clamping diode is on. If the LED is a little power device output line matching is possible with a resistor in parallel with the LED. This is not possible when the LED is not a little power device and $V_f/I_f > 50$Ω. In this case a back-termination is suitable. It is a resistor in series with the clamping diode. It properly works only if the time for propagation along the transmission line is long enough to allow, ended the pulse, again the clamping diode becomes on. LED power pulsing is a difficult topic since these devices have great junction capacitance and require great current. Often the current required for fast junction charge or discharge is greater then the $I_{d_{\text{max}}}$. This can be dangerous for the LED. Moreover these devices as a proper long T_{on} and T_{off} vanishing any attempt of shortening the light pulse. This is the same problem of opto-couplers speed. For great light pulses the solution can be to use more LEDs with more driver. In the figure 13.3 an adjustable current LED driver.
This circuit it is the same of that in figure 13.2. The current generators are drawn and their voltage reference are locked to the variable one. This results in constant ratio between the charge and the discharge current when its value is changed.
14. **TO BE CONTINUED**

Next topics could be:

- the spectroscopic chain;
- the spectroscopy amplifier;
- any other that could be interesting and I have something to write.

THANKS

Thanks to Yago Porto who revised formalism is LaPlace transform topic. He was the first in finding errors in this paper.