

"Advanced Very Deep CMOS Technologies"

João Antonio Martino University of São Paulo (USP), Brazil <u>martino@usp.br</u>

4th Summer School on INtelligent signal processing for FrontIEr Research and Industry (INFIERI) January 26th, 2017

Outline

- ✓ University of São Paulo SOI CMOS Group
- Seminar Presentation : CMOS Technologies
 - Basic concept : MOSFET
 - •History: past, present, future
 - Experimental and simulation results

Site: www.usp.br

*More than 2.000 Ph.D per year

The most important University of Brazil (First in Latin America)

90.000 Students 60.000 under graduation 30.000 Master and Ph.D

5.000 Faculty Member

Engineering 5.000 Students 500 Faculty Member

Electrical Engineering 1.200 Students 120 Faculty Member

First Microelectronic Laboratory in Brazil (1968)

University Clean Room Facilities

Characterization Facilities

Microwave Measurement Systems

Optical Measurements Systems

SOI CMOS GROUP since 1990 Electrical Engineering Department University of Sao Paulo, Brazil

João Antonio Martino

M.Sc and Ph.D at USP Pos-Doc : Imec/Belgium in 1990 Full Professor at USP since 2005 Chair of the EDS/IEEE South Brazil Chapter Distinguished Lecturer of EDS/IEEE Vice-Chair of Region 9 SRC

SOI CMOS GROUP at USP - 2016

All my present students and researchers of SOI CMOS Group (USP)

International Collaborations Imec/KUL + UCL + Grenoble + Caen

SOI CMOS GROUP

Main Research Activities

- Study of planar and Multiple Gate (3D) SOI MOSFETs (μ, Rs, DIBL, Vth, SS, GIDL, Ground Plane, Strained devices...) Electrical Characterization, modeling and Simulation
 - (2D and 3D) as a function of Temperature (80K a 700K)
- 2. Radiated devices for medical/space applications
- 3. Microfabrication for research (FinFET 3D Transistor) and educational application (Bulk and SOI Technology)
- 4. Study of UTBB SOI MOSFET and NW
- 5. Tunnel FET Devices (planar and NW)

Nowadays at USP

Hands-on on Microelectronic Fabrication at University of Sao Paulo for educational application (NMOS polysilicon-gate)

Every year for undergraduate students at USP

Nowadays at USP

Hands-on on Microelectronic Fabrication at University of Sao Paulo for educational application (SOI MOSFET Technology)

- Every year (40 hours)
- University of Sao Paulo, LSI/LME clean room
- For people from Brazilian community

Fabrication Results

Picture of transistor array with W=12µm and L from 50 to 5µm.

Van Der Pauw Structures.

Kelvin Structures.

Picture of transistor array with $W=12\mu m$ and L from 10 to $1\mu m$.

Detail of transistor array.

Nowadays at USP

Hands-on on Electrical Characterization of Advanced Transistors at University of Sao Paulo (MOS, SOI, FinFET, TFET)

- Every year (40 hours)
- University of Sao Paulo, LSI/PSI/USP
- For people from Brazilian community

Nowadays at USP

First FinFET Transistor (3D)

with Fully Electron-Beam-Lithography

Ebeam sample (USP): W_{FIN} = 100nm, H_{FIN} = 100nm, t_{ox} = 4.5nm, t_{box} = 200nm, L = 3.5µm; Gate electrode: Si-Poly; undoped channel.

10.0µ

 $V_{cs} = 0.0V$ 40.8 - V_{GS} = 0,25V $V_{GS} = 0.5V$ 6.0µ (Ψ)^Ω 4.0μ γ V_{GS} = 0,75V $V_{GS} = 1,0V$ 2.0µ 0.0 0.0 0.2 0.8 0.4 0.6 1.0 $V_{DS}(V)$

■ V_{GS} = -0,5V

 $V_{GS} = -0,25V$

FinFET view by scanning electron microscopy (SEM).

Channel cross-section layers obtained by FIB

V_=-15V

* MARTINO, J. A, FAPESP Week, Salamanca, Spain, December, 12, 2012

* RANGEL, R. ; POJAR, M.; SEABRA, A.C.; SANTOS Filho, S.G.; MARTINO, J. A, SBMicro 2013, Curitiba, Proc. IEEExplorer, p.1-5. Joao A. Martino – INFIERI – USP – 26/01/2017

IC Brazil: Skilled labor force

• 21 Fabless Companies in Brazil

- Focus: design services & IP (Power Management, automotive audio, video, wireless, communications, etc)
- All with outstanding technical capacity in several segments of the Semiconductor Industry
- 2 Silicon Plants (CEITEC , UNITEC)
- 2 Design Training Centers (USP, UFRGS):
 - 120 total seats capacity;
 - 1 year long training
 - Strong partnership
 - Cadence, Agilent ADS & SystemVue, MunEDA, SMART, ARM…

Design Houses

Centro de Treinamento 3 Programa de Formação de Projetistas de CI

Brazil IC – Design Training Center

- Development of the Brazilian Industry
 - Human resources
 - Training Center
 - International Industries partners

ARM

Centro de Treinamento 3 Programa de Formação de Projetistas de CI

IC Design Training Center at USP

" Advanced Very Deep CMOS Technologies"

João Antonio Martino University of São Paulo (USP), Brazil <u>martino@usp.br</u>

4th Summer School on INtelligent signal processing for FrontIEr Research and Industry (INFIERI) January 26th, 2017

Micro and Nano-technology Many applications

Micro and Nano-technology Many applications

Chaves

veículo

Smart house

Smart car

Botão de socorro

Auxílio para estacionar

 Aciona o ar condicionado Ao acionar os botões no teto, central Tela no painel orienta para acelerar Altera posição do banco conectada via satélite chama guincho, ou brecar. O volante é comandado Liga/desliga o rádio por um sistema eletrônico que faz ambulância, rastreia o carro, corta o Avisa se as portas não estão trancadas combustível e destrava as portas as manobras Controla limite de velocidade Controla volume do som do rádio Detecta se há invasores no carro Alerta de pedestre -Avisa da presença de pessoas próximas ao Pneu com chip Mede temperatura, pressão, desempenho e durabilidade Tráfego cruzado Computador de bordo Alerta de ponto cego Sinal sonoro avisa Realiza diversas funções, Avisa se veículos, pessoas presença de veículos na por comando de voz, como ou animais estão fora da perpendicular ligar e desligar o rádio visão do retrovisor

Joao A. Martino – INFIERI – USP – 26/01/2017

Moore's Law 1965

Moore 1962

Gordon Moore

Micro- and Nano-technology Many applications

First Patent of FET

Julius Edgar Lilienfeld (April 18, 1882 – August 28, 1963) was an Austro-Hungarian physicist. He was born in Lemberg in <u>Austria-Hungary</u> (now called <u>Lviv</u> in <u>Ukraine</u>), moved to the United States in the early 1920s, and became an American citizen in 1934. Lilienfeld is credited with the first patents on the <u>field effect transistor</u> (1925)

First Patent of FET

J. E. Lilienfeld: "Method and apparatus for controlling electric current" US patent 1745175 first filed in Canada on 22nd October 1925

J. E. Lilienfeld: "Device for controlling electric current" US patent 1900018, filed on 28th March 1928

First Patent of FET

J. E. Lilienfeld: "Method and apparatus for controlling electric current" US patent 1745175 first filed in Canada on 22nd October 1925

J. E. Lilienfeld: "Device for controlling electric current" US patent 1900018, filed on 28th March 1928

1960 First Demonstrated MOSFET

Metal Oxide Semiconductor (MOS) Field Effect Transistor (FET)

M. M. (John) Atalla and Dawon Kahng at Bell Labs achieved the first successful insulated-gate field-effect transistor (MOSFET), Top View

" Advanced Very Deep CMOS Technologies"

The **MOSFET** (metal–oxide–semiconductor field-effect transistor) utilizes an insulator (typically $\frac{SiO_2}{2}$) between the gate and the body.

The SOI MOSFET is a Silicon-On Insulator MOSFET

The **FinFET** is a transistor fabricated around of a Fin

The **TFET** (tunnel field-effect transistor) is based on band-to-band tunneling

PMOSFET

NMOSFET

(Metal-Oxide-Semiconductor Field Effect Transistor, canal N, Enhancement type)

Keeping Pace with Moore's law

- Use of new materials (high-κ dielectrics, midgap metal gate, silicides, metals,...
- •Use mobility enhancement (strained silicon, SiGe, Ge,...
- Modify MOSFET structure to improve electrostatics:
 Bulk→SOI→Multigate (FinFET...)

MOSFET First Generation [~60]

Substrate

* Self-aligned : between gate and (source/drain) – lower parasitic capacitance;

- * LDD: Lower longitudinal electric field
- * Silicide: Lower gate and source/drain series resistance

* HALO: Better control of Short Channel Effect (SCE)

Strain Technology

nMOS: tensile channel strain

In order to boost the carrier mobility (hence the drive current) and improve the device performance uniaxial and biaxial strains are being successfully used

MOSFET 5th generation [end of ~90]

* Strained silicon: Improvement of carrier's mobility

* SiON : Reduces the gate leakage current

Basic MOSFET equations

Why SOI option ?

•Triode
$$I_D = \mu C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_D - \frac{1}{2} n V_D^2 \right]$$

•Saturation $I_{Dsat} = \frac{1}{2n} \mu C_{ox} \frac{W}{L} (V_G - V_{TH})^2$
•Subthreshold swing $S = n \frac{kT}{q} \ln (10)$
•Transistor Efficiency $\frac{g_m}{I_D} = \sqrt{\frac{2\mu C_{ox} W/L}{nI_D}}$

•C_J in SOI is ~10 X lower than in Bulk MOSFET •I_D in SOI is 30% higher than Bulk MOSFET •One generation ahead

G.K. Celler, S. Cristoloveanu, Journal of Applied Physics, Vol. 93, no. 9, p. 4955, 2003

•Radiation Hardness: Single event upset

Bulk

SOI

•SOI technology is Latch up free

0.5 µm SOI CMOS Technology

- Test integrated circuit (test chip)
- 0.5 µm SOI CMOS Technology developed in Imec at 90's years...

GC SOI MOSFET (Graded Channel) USP/Brazil-UCL/Belgium

Advantages of GC SOI :

- Higher gm
- Lower (better) g_D (higher V_{EA})
- Higher A_V
- Larger Breakdown voltage
- Reduced Harmonic Distortion
- * M. A. Pavanello, J. A. Martino e D. Flandre; Solid State Electronics, 2000

Operational Amplifier USP/Brazil-UCL/Belgium

Joao A. Martino – INFIERI – USP – 26/01/2017

Short-channel problems in MOSFETs

Electric field lines from the drain encroach on the channel region. Any increase of drain voltage decreases the control exerted by the gate on the channel region.

E-Field lines

Regular SOI MOSFET Double-gate MOSFET

Short Channel Effect

* Jean-Pierre Colinge

– USP – 26/01/2017

Evolution of Transistors

"Multiple-Gates" MOSFETs

- * Jean-Pierre Colinge
- 1: Single gate
- 2: Double gate
- 3: Triple gate
- 4: Quadruple gate (GAA)
- 5: Пgate

Triple⁺-Gate Transistor Ω gate

Photo: Courtesy Infineon and Texas Instruments, Inc.

Device Research Conference, 2006

Fin structure "Discrete" current values

Active region Gate P-FET N-FET

Quantum-Wire MOSFET (UCL, SOI Conf., 1995)

Omega gate (TSMC, IEDM 2002)

INTEL's Tri-gate (SSDM'02)

$$I_D = I_{Do} \frac{\theta \mu_o W + 2\mu_1 t_{si}}{\mu_o P}$$

θ=1 in a triple-gate MOSFETθ=0 in a FinFET

where I_{Do} is the current of a planar, single-gate transistor occupying the same area; μ_o is the mobility at the top interface, μ_1 is the sidewall mobility.

U. Singapore

* Jean-Pierre Colinge

Intel Transistor Leadership

Bulk FinFET – Intel (Triple Gate or 3D)

22 nm 3-D Tri-Gate Transistor

3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation *Transistors have now entered the third dimensionl*

Intel Microprocessor Ivy Bridge uses 22-nanometer technology

Ten Generations of IBM SOI Technology

6 October 14th, 2013 Shanghal, China

Silicon on Insulator Technology Summit

© 2012 IBM Corporation

Why FINFET

Many intrinsic advantages in FinFET

Enhanced control of Short Channel Effect (SEC)

- Multiple gates control the channel SCE in FF ≻
- Doping controls the SCE in bulk

Significant DIBL reduction

- With fully-depleted device capability
- Better electrostatics

Excellent low Vdd performance

- Performance roll-off with Vdd not as significant as bulk
- Potential for lower power operation

Scalability for many generations once isolation is fixed

16 October 14th, 2013 Shanghal, China

Silicon on Insulator Technology Summit

© 2012 IBM Corporation
Current FinFETs: Bulk Isolated vs Oxide Isolated

Comparison

18 October 14th, 2013 Shanghal, China

Silicon on Insulator Technology Summit

© 2012 IBM Corporation

Evolution of MOSFET (main steps)

Gate Silicon Fin Buried Oxide

Bulk – MOSFET (Planar)

 Source
 Drain

 N⁺
 N+

 P
 I Gate "Single Gate"

 SOI MOSFET (Planar)

Gate

From Bulk to Thin-Silicon Channels

Threshold Voltage Control

UTB-FDSOI Demonstrations

FDSOI/UTBB Technology Benefits

University of Sao Paulo

smart mobile applications A mix of advanced and mature technologies

DH's - Examples of IC's - CEITEC

- Chip do Boi V1, CMOS 0,6 μm
- BNDES

 Brinco Chip do Boi (Ox Chip Earring)

DH's - Examples of IC's - LSITec

1. Failure detector/signalizer on high-voltage transmission lines

• CPFL

LSI-TEC – IC Design House Projects in Production Stage

LSI-TEC – IC Design House Projects in Production Stage

Industrial instrumentation & Distribution network and transformer monitoring

LSI-TEC – IC Design House Projects in Development

- Portable, low cost ECG monitors up to 12 channels
- Remote diagnostic
- Cost Reduction for Public health.

LSI-TEC – IC Design House **Projects in Development**

Under Development chip

More Moore to More More Moore

More Moore to More More Moore

Scaling and power crisis

MOSFET: Drift-Diffusion conduction mechanism (>60mV/dec)

TFET

Tunnel Field Effect Transistor - nTFET

Based on PIN Diode technology;
 Reduced short-channel effects,
 Lower subthreshold swing;

TFET

Tunnel Field Effect Transistor - nTFET

A. Seabaugh, IEDM 2011 Short Course (University of Notre Dame)

Channel/Drain Underlap

Conduction Mechanism

Conduction Mechanism

Conduction Mechanism

TFET

Analog Performance

Analog Performance

Description of Devices

Fabricated at IMEC, Belgium Triple Gate MuGFETs Undoped channel ($N_A = 1x10^{15}$ cm⁻³) Physical dimensions:

 $H_{Fin} = 65 \text{ nm}$ Gate oxide = $HfO_2(2nm) + SiO_2(1nm)$ $t_{box} = 145 \text{ nm}$ L = 250 nm $W_{Fin} = 40 \text{ nm}$ and 250 nm

Analog Performance

pFinFET

pTFET

* Agopian et al, Trans. Elec. Dev., 2012

Drain Current

Drain Current

Drain Current

Both TFET and FinFET reach the "saturation" region almost at the same V_{DS} (≅-1.1V)

Transconductance

gm_{pTFET} << gm_{pFinFET} gm: FinFET better than TFET

Output Conductance

g_D for **pTFETs** is at least 6 orders of magnitude smaller (better) than for pFinFETs

Early Voltage

For V_{DS} = -0.9V the V_{EA} values were degraded for both pTFET and pFinFET because for this bias condition the transistors do not reach a saturation plateau

Intrinsic voltage gain

TFET is promising for analog applications

* Agopian et al, TED, 2012

* Agopian et al, ULIS/EUROSOI 2015

I_{ON} (MOSFET) >> I_{ON} (TFET)

Analog Parameters

Analog Parameters

Analog Parameters

High V_{GS} ensures BTBT

High V_{DS} ensures plateau

$$|A_v|=20.\log(gm/g_D)$$

TFET is better than MOSFET for all studied temperature range

Ge Influence

Tunnel Field Effect Transistor - TFET

Low drive current (I_{ON}) capability for Si;

- Use of Ge at the source to improve tunneling mechanism;
- Ge introduces some defects in the structure, increasing the interface trap density.

Dimensions:

Diameter (D) = 200nm; Channel Length (L_{CH}) = 200 nm; Physical Gate Length (L_{G}) = 240 nm; Gate/Source overlap (L_{GS}) = 80 nm; Gate/Drain underlap (L_{GD}) = 40 nm.

Source: 1.10²⁰ at/cm⁻³ **Channel:** 1.10¹⁶ at/cm⁻³ **Drain:** 1.10¹⁹ at/cm⁻³

Gate oxide = SiO_2 (1nm)+HfO₂ (3nm)

Dimensions:

Diameter (D) = 200nm; Channel Length (L_{CH}) = 200 nm; Physical Gate Length (L_{G}) = 240 nm; Gate/Source overlap (L_{GS}) = 80 nm; Gate/Drain underlap (L_{GD}) = 40 nm.

Source: 1.10²⁰ at/cm⁻³ Channel: 1.10¹⁶ at/cm⁻³ Drain: 1.10¹⁹ at/cm⁻³

Gate oxide = SiO_2 (1nm)+HfO₂ (3nm)

Dimensions:

Diameter (D) = 200nm; Channel Length (L_{CH}) = 200 nm; Physical Gate Length (L_{G}) = 240 nm; Gate/Source overlap (L_{GS}) = 80 nm; Gate/Drain underlap (L_{GD}) = 40 nm.

Source: 1.10²⁰ at/cm⁻³ Channel: 1.10¹⁶ at/cm⁻³ Drain: 1.10¹⁹ at/cm⁻³

Gate oxide = SiO_2 (1nm)+HfO₂ (3nm)

Different source characteristics:

➢ Si (100%)
➢ Si_{0.73}Ge_{0.27}

➢ Si_{0.54}Ge_{0.46}

Ge (100%)

Drain Current

Transconductance

gm (TFET) = f(T) : Inverse of MOSFET

Output conductance

Ge BTBT g_D

similar relative variation with temperature

Degradation of g_D with temperature increases with BTBT

Intrinsic Voltage Gain

 $|A_V| = 20.\log(gm/g_D)$

Analysis of TFET and FinFET Differential Pairs with Active Load from 300K to 450K

*Martino et al., EUROSOI/ULIS, 2016

Conclusion

FET: History: past, present, future
MOSFET, SOI MOSFET, GC SOI MOSFET,
Bulk and SOI FinFET, UTBB SOI..... TFET
Experimental and Simulation results

✓ About the Moore's Law....

Past and future downsizing trends

*Hiroshi Iwai, EUROSOI/ULIS, 2016

(1970) 10 μ m \rightarrow 8 μ m \rightarrow 6 μ m \rightarrow 4 μ m \rightarrow 3 μ m \rightarrow 2 μ m \rightarrow 1.2 μ m \rightarrow

0.8 µm → 0.5 µm → 0.35 µm → 0.25 µm → 180 nm → 130 nm →

90 nm \rightarrow 65 nm \rightarrow 45 nm \rightarrow 32 nm \rightarrow (28 nm \rightarrow) 22 nm(2012)

→ 14 nm (2014)

Fig.2 Past downsizing trend

Year	2013	2015	2017	2019	2021	2023	2025	2027
Commercial name (nm)	14	10	7	5	3.5	2.5	1.8	1.3
Half pitch (HP) (nm)	40	32	25.3	20	15.9	12.6	10	8
L _g (nm)	20.2	16.8	14.0	11.7	9.7	8.1	6.7	5.6
Fig.4 Future downsizing trend by ITRS2013								

Acknowledgments

SOI CMOS GROUP at USP - 2016

All my present students and researchers of SOI CMOS Group (USP)

Acknowledgments

SOI CMOS GROUP – All Generations

All Generations of my students and researchers of SOI CMOS Group Prof. Cor Claeys, Eddy Simoen, Rita Rooyackers ...from Imec/Belgium Prof. Dr. Jean-Pierre Colinge (TSMC) Prof. Dr. Sorin Christoloveanu (Minatec/France)

University of Sao Paulo

You are all welcome to visit us...

Dank u Merci Thank you Obrigado

João Antonio Martino University of São Paulo, Brazil martino@lsi.usp.br