Context ALMA

ALMA is the most important completed project in astronomy of recent years US, Europe, Japan In North of Chile, 5000 m altitude

66 radiotelescopes 12m diameter, frequency range from 100 GHz to 800 GHz (Teraherz region of spectrum = 0.1 to 10 THz)

Astronomy is a strong driver of THz technology

The LLAMA radiotelescope

LLAMA to be installed this year, will resemble APEX

The Universe as a Chemistry Lab

http://chandra.harvard.edu/resources/flash/periodic tables.html

*Around 200 chemical species have been observed in the Interstellar Medium

Alcohols, sugars, inorganics, pre-biotics, lons, neutrals...

*Radiotelescopes play a crucial role collecting spectral signatures to understand our chemical origins

https://astrochem.org

From atoms to complex molecules!!!

Now we are equipped to study the Chemistry of the Space

Molecules in Space, 2013

https://universe-review.ca/F11-monocell.htm

HIFI Spectrum of Water and Organics in the Orion Nebula

© ESA, HEXOS and the HIFI consortium E. Bergin

"Collecting Interstellar Samples"

ALMA observatory: Located in Chile, the interferometer operates at mm and sub-mm wavelengths http://alma.mtk.nao.ac.jp/e/news/alma/2010/0522post_11.html

The Herschel Space Observatory was launched with instruments Sensitive from the far infrared to sub-mm wavelengths http://www.jpl.nasa.gov/missions/herschel-space-observatory/

A new generation of instruments

– ground-based, in space or even
on planes – has allowed to explore
"molecular links" between numerous
protostellar systems

SOFIA, observatory on a Boeing designed for Infrared Astronomy https://www.nasa.gov/mission_pages/SOFIA/13-05.html

How to analyze???

Various friendly softwares and tools have been developed to reduce and analyze data

GILDAS → https://www.iram.fr/IRAMFR/GILDAS/

CASA → https://casa.nrao.edu/

HIPE → https://www.cosmos.esa.int/web/herschel/hipe-download

CASSIS → http://cassis.irap.omp.eu/

 $\textbf{AIPS} \rightarrow \textbf{http://www.aips.nrao.edu/index.shtml}$

. . .

Observations

Our Lab: indentifying molecules

Combining different approaches: A common exercise in Astrochemistry

Observations, experiments and models offer relevant information about the presence of species and their chemical properties in the Interstellar Medium

Receiver Demonstration Lab

The cryogenic portion of an ALMA receiver (Band 9)

IF bandwidth 4-12 GHz
Total power receiver noise
temperature < 169 K over 80% of
the band

We will present a very simple version of a radio-astronomy receiver, with the main elements: horn mixer, amplifier, and demonstrate the principle of calibration load, to calibrate the temperature scale of the observations.

Contacts for "radio" labs at IAG Department of Astronomy

Radio receiver demonstration
 Danilo Zanella <u>danilo.zanella@iag.usp.br</u>

Molecular line identification
 Edgar Mendoza <u>emendoza@usp.br</u>

General
 Jacques Lepine jacques.lepine@iag.usp.br

Better contact us to be sure that we will be there