Introduction

- The proper allocation/mapping of data-parallel processes (kernels) in a High-Performance Computing (HPC) platform is crucial to exploit the system full potential.
- Dynamic Heterogeneous Platforms: type and amount of available devices may change at runtime.
- Applications requirements (Quality of Service – Qos): also may change at runtime.

Problem Formulation

- Only two devices: CPU and GPU.
- Workload partitioning ↔ Data partitioning.
- Estimate the amount of data to be allocated to each device.
- Definition: Best partitioning is the one that enforces minimization of execution time.

Design of the System Manager (SM)

- It is assumed a performance profile of the kernel in each device is available → Matrix R.
- HPC feedback: measurement of devices performances in order to update profiles in R.
- QoS requirements: application dependent.
- SM uses those to estimate the workload partitioning that minimizes kernel execution time.

Mathematical Representation

Error e_k: Measure of how well the resources can be combined to achieve the QoS requirements.

$$e_k = \left(d - \sum_{j=1}^{N} r_j \lambda(j)\right) = (d - R\lambda_k)$$

$d \rightarrow$ QoS requirements, $R \rightarrow$ resources matrix, $r_j \rightarrow$ column of R.

GOAL

Develop a system manager able to sense and react at runtime to variations in the High-Performance Heterogeneous Computing platform as well as in the QoS requirements.

Scenario 1: new application needs to be mapped.

Scenario 2: resource/network failures.

The Intellligence embedded in the SM

Workload Partitioning → Minimization Problem

$$\min_{\lambda} J(\lambda) = \mathbb{E}[e_k^2] = \mathbb{E}\left[d - R\lambda_k\right]^2$$

subject to $\lambda(j) \geq 0, j \in [1, N]$, $1^T \lambda_k = \sum_{j=1}^{N} \lambda(j) = 1$

Adaptive Filter - Reweighted LMS

- Naturally fit for real-time estimation: no need for previous training.
- Able to track variations in the HPC resources (matrix R) and in the QoS requirements (vector d).
- Easy to be scaled up towards several applications (kernels) and computing devices.

$$\lambda_{k+1} = \frac{1}{N} 1^T 1 = \frac{1}{N} \mathbf{1} \quad D_\lambda = \text{diag}\{\text{entries of } \lambda\}$$

Results

- Test: variation in the QoS requirements, d changes while R remains fix.
- Adaptive Filter is able to provide a new workload partitioning at runtime → Fast reaction.

Mean-Square Error

Change in QoS Requirement d

New workload partitioning λ_k is estimated at runtime.

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No. [317446] INFIERI “Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry.”