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Electron beam dynamics in storage rings

Synchrotron radiation 

and its effect on electron dynamics
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Lecture 3: Electron dynamics-I 
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From the lecture on radiation damping

We have seen that the emission of synchrotron radiation 

induces a damping of the betatron and synchrotron oscillations; the 

radiation damping times can be summarized as
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Ji are the damping partition numbers

One would expect that all particle trajectories would collapse to a single point 

(the origin of the phase space, i.e. 6D the closed orbit). This does not happen 

because of the quantum nature of synchrotron radiation

start 1 synch period 10 synch period 50 synch period

Tracking example: synchrotron period 273 turns, radiation damping of 6000 turns:



Quantum nature of synchrotron emission

The radiated energy is emitted in quanta: each quantum carries an energy 

u = ħ;

The emission process is instantaneous and the time of emission of individual 

quanta are statistically independent;

The distribution of the energy of the emitted photons can be computed from 

the spectral distribution of the synchrotron radiation;

The emission of a photon changes suddenly the energy of the emitting  

electron and perturbs the orbit inducing synchrotron and betatron 

oscillations. 

These oscillations grow until reaching an equilibrium when balanced by 

radiation damping

Quantum excitation prevents reaching zero emittance in both planes with 
pure damping.



From the lecture on synchrotron radiation

Total radiated power
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Energy distribution of photons emitted by 

synchrotron radiation (I)

Energy is emitted in quanta: each quantum carries an energy u = ħ
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From the frequency distribution of the power radiated
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We can get the energy distribution of the photons emitted per second:

n(u) number of photons emitted per unit time with energy in u, u+du

un(u) energy of photons emitted per unit time with energy in u, u+du

un(u) must be equal to the power radiated in the frequency range du/ħ at u/ ħ
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Using the energy distribution of the rate of emitted photons one can compute:
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Energy distribution of photons emitted by 

synchrotron radiation (II)
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Introducing the function F()

we have

[See Sands]



Let us consider again the change in the invariant for linearized synchrotron 
oscillations

Quantum fluctuations in energy oscillations (I)
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After the emission of a photon of energy u we have
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The time position  w.r.t. the synchronous particle does not change

We do not discard the u2 term since it is a random variable and its average 

over the emission of n(u)du photons per second is not negligible anymore.

Notice that now also the Courant Snyder invariant becomes a random 
variable! 
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Quantum fluctuations in energy oscillations (II)

We want to compute the  average of the random variable A over the 

distribution of the energy of the photon emitted

ppp uNuNdA  22 2  Quantum excitation

Radiation damping

We have to compute the averages of u and u2 over the distribution n(u)du of 
number of photons emitted per second.

As observed the term with the square of the photon energy (wrt to the 
electron energy)  is not negligible anymore



Quantum fluctuations in energy oscillations (III)

Using these expressions…
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and depends on the location in the ring. We must average over the position 

in the ring, by taking the integral over the circumference.

Following [Sands] the excitation term can be written as
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Quantum fluctuations in energy oscillations (IV)

The change in the invariant averaged over the photon emission and 

averaged around one turn in the ring still depends on the energy deviation 

 of the initial particle. 

We can average in phase space over a distribution of particle with the 

same invariant A. A will become the averaged invariant
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The linear term in u generates a term similar to the expression obtained 

with the radiative damping. We have the differential equation for the 

average of the longitudinal invariant  
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Quantum fluctuations in energy oscillations (V)
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The average longitudinal invariant decreases exponentially with a damping 

time  and reaches an equilibrium at

This remains true for more general distribution of electron in phase 

space with invariant A (e.g Gaussian)
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The variance of the energy oscillations is for a Gaussian 

beam is related to the Courant-Snyder invariant by



Quantum fluctuations in energy oscillations (VI)

For a synchrotron with separated function magnets
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The relative energy spread depends only on energy and the lattice (namely 

the curvature radius of the dipoles)
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The equilibrium value for the energy spread reads



A tracking example

Diffusion effect off 

synchrotron period 200 turns; damping time 6000 turns;

Diffusion effect on 



Quantum fluctuations in horizontal oscillations (I)

Invariant for linearized horizontal betatron oscillations

after the emission of a photon of energy u we have

Neglecting for the moment the linear part in u, that gives the horizontal 

damping, the modification of the horizontal invariant reads

Defining the function
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As before we have to compute the effect on the invariant due to the 

emission of a photon, averaging over the photon distribution, over the 

betatron phases and over the location in the ring [see Sands]:

Dispersion invariant



Quantum fluctuations in horizontal oscillations (II)
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Combining the two contributions we have the following differential 

equation for the average of the invariant in the longitudinal plane
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At equilibrium

Quantum fluctuations in horizontal oscillations (III)
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radiation emission occurs
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Quantum fluctuations in vertical oscillations (I)
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Invariant for linearized vertical betatron oscillations

after the emission of a photon of energy u the electron angle is changed by
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With zero dispersion the previous computation will predict no quantum 

fluctuations i.e. zero vertical emittance.

However a small effect arises due to the 

fact that photons are not exactly 

emitted in the direction of the 

momentum of the electrons

The electron must recoil to preserve the 

total momentum



At equilibrium

Quantum fluctuations in vertical oscillations (II)
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In practice this effect is very small: the vertical emittance is given by vertical 

dispersion errors and linear coupling between the two planes of motion.
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the modification of the vertical invariant after the emission of a photon 

reads

Averaging over the photon emission, the betatron phases and the location 

around the ring:



Quantum lifetime (I)

Electrons are continuously stirred by the emission of synchrotron radiation 

photons

It may happen that the induced oscillations hit the vacuum chamber or get 

outside the RF aperture:

The number of electron per second whose amplitudes exceed a given 

aperture and is lost at the wall or outside the RF bucket can be estimated 

from the equilibrium beam distribution [see Sands]

20/30R. Bartolini, John Adams Institute, 20 November 2014



Quantum lifetime (II)
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beam size the quantum lifetime is 
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synchrotron light sources, e.g. Diamond
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Related beam quantities: beam size
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The horizontal beam size has contributions from the variance of betatron 

oscillations and from the energy oscillations via the dispersion function: 

Combining the two contributions we have the bunch size:

The vertical beam size has contributions from the variance of betatron 

oscillations but generally not from the energy oscillations (Dz = 0). 

However the contribution from coupling is usually dominant
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In 3rd generation light sources the horizontal emittance is few nm and the 

coupling k is easily controlled to 1% or less, e.g. for Diamond

x = 2.7 nm; k = 1%  y = 27 pm;

x = 120 m y = 6 m
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Brilliance and emittance
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Flux = Photons / ( s  BW)

Brilliance = Flux / ( As   ) ,  [ Photons / ( s  mm2  mrad2  BW )]

The brilliance represents the number of photons per second emitted in a given 

bandwidth that can be refocus by a perfect optics on the unit area at the 

sample. 

 /  = Opening angle in vert. / hor. direction
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The brilliance of the photon beam is determined (mostly) by the electron beam 

emittance that defines the source size and divergence

Emittance of third generation light source



Lattice design has to provide low emittance and adequate space in straight 

sections to accommodate long Insertion Devices
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Zero dispersion in the straight section was used especially in early machines

avoid increasing the beam size due to energy spread

hide energy fluctuation to the users

allow straight section with zero dispersion to place RF and injection

decouple chromatic and harmonic sextupoles

DBA and TBA lattices provide low emittance with large ratio between

Minimise  and D and be close to a waist in the dipole

nceCircumfere
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Flexibility for optic control for apertures (injection and lifetime)

Low Emittance lattices



ALS

DBA used at: 
ESRF, 
ELETTRA, 
APS, 
SPring8, 
Bessy-II, 
Diamond, 
SOLEIL,
SPEAR3
...

TBA used at 
ALS, 
SLS, 
PLS,
TLS 
…

Low emittance lattices

APS

Low emittance and adequate space in 

straight sections to accommodate long 

Insertion Devices are obtained in 

Double Bend Achromat (DBA) 

Triple Bend Achromat (TBA)
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MAX-IV

The original achromat design can be 
broken, leaking dispersion in the 

straight section

ESRF 7 nm  3.8 nm
APS 7.5 nm  2.5 nm
SPring8 4.8 nm  3.0 nm
SPEAR3 18.0 nm  9.8 nm
ALS (SB) 10.5 nm  6.7 nm

New designs envisaged to achieve 
sub-nm emittance involve

MBA
MAX-IV (7-BA)

Damping Wigglers
NSLS-II
Petra-III

Low emittance lattices

APS



Related beam quantities: bunch length

Bunch length from energy spread

The bunch length also depends on RF parameters: voltage and phase 

seen by the synchronous particle
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z depends on 

the magnetic lattice (quadrupole magnets) via 

the RF slope

Shorten/Lengthen bunches increasing the RF slope at the 

bunch (Harmonic cavities)

Shorten bunches decreasing 
(low-alpha optics)
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Bunch lengthening

Bunch shorthening

bunch length manipulation: harmonic cavities

RF cavities with frequency equal to an harmonic of the main RF 

frequency (e.g. 3rd harmonic) are used to lengthen or shorten the bunch



Summary

The emission of synchrotron radiation occurs in quanta of discrete energy

The fluctuation in the energy of the emitted photons introduce a noise 

in the various oscillation modes causing the amplitude to grow

Radiation excitation combined with radiation damping determine the 

equilibrium beam distribution and therefore emittance, beam size, energy 

spread and bunch length.

The excitation process is responsible for a loss mechanism described by 

the quantum lifetime

The emittance is a crucial parameter in the operation of synchrotron light 

source. The minimum theoretical emittance depends on the square of the 

energy and the inverse cube of the number of dipoles
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