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Agenda

● Introduction
● Questions to address/study

– Jet-medium interactions and jet-induced flow
– Event-by-event flow and flow fluctuations

● Our (3+1)  hydrodynamic code approach
● Graphics Cards (GPU) implementation
● Simulation results
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Introduction – heavy ion collision
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Anisotropic Flow and Nonflow

● Questions to address/study:
–  Jet-medium interactions and jet-induced flow
–   Event-by-event flow and flow fluctuations

Measured momentum anisotropyMeasured momentum anisotropy

Flow Nonflow Flow fluctuations

Bulk properties
Jet-medium interactions,

Energy loss

Initial state fluct.
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Questions to address/study

● Collective behaviours
● Study of high resolution of jets dynamics :-)
● Event-by-event flow and flow fluctuations fast enough for 

good statistic :-) 
● Sophisticated implementation :-(
●  A lot of computer power (large amount of data grid) :-(
● Single thread simulation on CPU takes ~ a few days :-(
● Our multi thread simulation on GPU takes  ~ a few 

minutes :-)
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Jet-medium interactions and jet-
induced flow

● ALICE and ATLAS claim:
– “double peak structure on away side in triggered 

two-particle correlations can be naturally 
explained by sum of measured anisotropic flow 
Fourier coefficients” → everything is flow

– Is this really hydro-like flow (pressure driven 
expansion) ?

– Or this structure is due to jet-medium 
interactions which show up in two-particle flow 
measurement?

● We could use 3+1 hydro code + jet 
energy loss algorithm to address 
this question

Alice, Phys. Rev. Lett. 107,
 032301 (2011) 
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Event-by-event flow and flow fluctuations

● Hot topic: higher harmonic 
anisotropic flow

● Odd flow harmonics (v3 , v5 …) 
generated only due to 
fluctuations

● Fast and efficient hydro code is 
needed to study event-by-event 
fluctuations and flow*

→ GPU may help

(*) This can be (approximately) studied using averaged fluctuations, but full event-by-
event simulations give more flexibility 

Alice, Phys. Rev. Lett. 107, 032301 (2011) 
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Our hydrodynamic program sequence 

● Simulation stages:
– generating initial conditions
– solving differential equations
– check for freeze-out condition
– computing freeze-out surface and particle emission 

functions
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Hiperbolic conservation laws

Lab frame variables: E,M,R, v
Fluid element frame variables: e,p,n.

R -net charge density in calculational frame (laboratory frame),
E - energy density in calculational frame,
M - momentum density in calculational frame,
 - energy density  in the local rest frame of fluid
p - pressure in the local rest frame of fluid
n - charge density  in the local rest frame of fluid

transformation from the calculational frame to the local rest frame of the fluid
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Equation system for the Riemann 
problem

where U = (E, Mx, My, Mz, R)U = (E, Mx, My, Mz, R) is a vector of conserved quantities in the laboratory rest 
frame

F, G, H are vectors of fluxes of those quantities in the x, y, z directions

Numerical Scheme 
for a three-dimensional problem
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WENO algorithm

● Weighted Essentially Non-Oscillatory scheme
– high order in space
– weighing reconstruction candidates (vertices):
– in high gradient regions the oscillations are cut down
– in monotonic field region algorithm is of highest order possible
– in some cases may be more dissipative than classical 

reconstruction methods
– two types: 5th and 7th order

→ generally very good performance
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Hydrodynamics with sources

● Our goal: study of jet-QGP interactions (parton 
propagating through plasma)

● Source term form is of vital importance

arXiv:1402.6469v2 [nucl-th]
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QGP – jet interaction

arXiv:1402.6469v2 [nucl-th]
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Energy deposition

● Term responsible for modeling interactions 
between the jet and the plasma

● We used:

● Two mechanisms of jet energy loss:
– gluon radiation
– collisions of partons in dense medium
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CPU vs. GPU architectures

● CPU multiple cores
● GPU thousands of cores
● A lot of resources dedicated to computations
● Parallel streaming multiprocessors
● Limited memory hierarchy
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GPU execution
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Hydrodynamics on GPU

● Each thread corresponds to a point in XY plane. 
The kernel then loops over Z axis, so that each 
thread calculates points on a line parallel to OZ.

Algorithm is implemented using surface memory
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Simulation results
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Simulation results
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Simulation results – single parton

● Energy density and velocity profile (xy plane, z=0)
– dx = 0.1 fm, dt = 0.02 fm/c, grid: 256^3, EOS p = e/3, t = 2.4 fm/c
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Simulation results
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Simulation results – two partons
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Freeze-out

● freeze-out implementation – in progress
– Cooper-Frye formula:

– freezeout conditions: isochronic, isothermal
– momentum distribution on hypersurface
– use existing hadron freeze-out generator 

● THERMINATOR 2
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Summary

● initial conditions from UrQMD
– short simulation (~1fm/c)
– Monte Carlo → energy & momentum density

● hydrodynamics with sources
● algorithms, performance & stability tests

– implemented & tested: WENO
● matching the parametrization (custom class / 

THERMINATOR2::Lhyquid3d) is ongoing



Thank you for your attention



additional / backup slides
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Why GPU?

● Full simulation on standard CPU:
– from few hours to few days (depending on grid size)

● Computing on clusters (CPU)?
– effective but costly

● Another solution – GPU computing
– great speed-up for parallel problems
– cost effective (lowest price per FLOPS)
– flexible (scalable)
– C-based language (easy to learn)
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GPU architecture

● GPU is specialized for compute-intensive, highly parallel 
computation - exactly what graphics rendering is about - 
and therefore designed such that more units are devoted to 
data processing rather than data caching and flow control

● well-suited to address problems that can be expressed as 
data-parallel computations - the same program is executed 
on many data elements in parallel - with high arithmetic 
intensity - the ratio of arithmetic operations to memory 
operations

● relative speed-up (GPU vs. CPU): up to ~102
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Memory hierarchy and threads 
organization
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Comparison of performance tests
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Ellipsoidal flow (initial conditions)

● Collective effect (QGP 
characteristic)
● finite system, EOS: p=0

● dimensions: 120×120×120 
cells

● Δx = 0.1fm, Δt = 0.02fm/c
● 150 steps

C
e
 = 2.0 GeV/fm3

C
n
 = 0.75 GeV/fm3

T
0
 = 2.0

T
1
 = 0.4

T
2
 = 0.6

T
3
 = 0.8

b
e
 = 1.0

b
n
 = 1.0

p
0
 = 0.0
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UrQMD model

● Ultra-relativistic Quantum Molecular Dynamics
● Monte Carlo simulation package for nuclear 

collisions (including early stage interactions and 
post-freezeout kinematics)
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UrQMD - output
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UrQMD – initial conditions

• Au-Au 200AGeV

• b = 2fm

• t = 1fm/c

Simulation:

• EOS: p = e^2/3

• 128 x 128 x 128

• dx = 0.1 fm

• dt = 0.02fm/c
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Simulation: energy density (I)

Initial conditions for averaging 10 UrQMD events Au+Au @ 200 GeV/c 
0-10% most central 
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Simulation: energy density (II)

Initial conditions for averaging 100 UrQMD events Au+Au @ 200 GeV/c 
0-10% most central 
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Simulation: energy density (III)

Initial conditions for averaging 150 UrQMD events Au+Au @ 200 GeV/c 
0-10% most central 
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