The LHCb Online system for Run 3:
trigger-free readout
with (almost exclusively) off-the-shelf hardware

Tommaso Colombo
on behalf of the LHCb Online Group

ACAT, 21 Aug 2017, Seattle
The LHCb experiment

One of the 4 major experiments at CERN’s Large Hadron Collider

Single-arm forward spectrometer, built for precision measurements of B-meson decays
The LHCb Run 3 upgrade

Now

- **Motivation:**
 - Cope with higher luminosity
 - Increase trigger efficiency
 (see Rosen Matev’s talk)
 - No more hardware trigger
 - Full readout of the detector
 at the 30 MHz rate of inelastic collisions delivered by the LHC
 - All-new readout electronics
 - All-new event builder
 - Upgraded event-filter farm

2020

LHCb Run 2 Trigger Diagram

- **40 MHz bunch crossing rate**

L0 Hardware Trigger:

- 1 MHz readout, high E_T/P_T signatures

- Partial event reconstruction, select displaced tracks/vertices and dimuons

- Buffer events to disk, perform online detector calibration and alignment

- Full offline-like event selection, mixture of inclusive and exclusive triggers

- **12.5 kHz (0.6 GB/s) to storage**

LHCb Run 3 Trigger Diagram

- **30 MHz inelastic event rate (full rate event building)**

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geomeric selections

- Buffer events to disk, perform online detector calibration and alignment

- Add offline precision particle identification and track quality information to selections

- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers

- **2-5 GB/s to storage**
LHCb Run 3 DAQ & event filter

- Detector front-end electronics
- Event builder network
- Event builder PCs
- Event filter farm (~ 4000 dual socket nodes)
- Online storage
 - 300 GB/s
 - ~ 100 PB
 - 2 – 4 k streams
- ~500
- ~10000 Point-to-point links
- ~500
- 100 Gbit/s
- 100 Gbit/s
- Clock & fast commands
- Sub-farm switch
- TFC
- DAQ cluster
- Filter cluster
- Underground
- Surface
Readout

- Front-end / DAQ interface:
 - GBT (link layer) + Versatile Link (physical layer)
 - Radiation-hard optical link interface
 - Up to 4.48 Gb/s per link

- DAQ readout: TELL40
 - PCIe card in event builder PC
 - Receives data from GBT links
 - Buffers the data in the main PC memory via DMA

- Even with no low-level trigger, still need timing & synchronous command generation + distribution: SODIN + SOL40
PCIe40: one card, many uses

• One card: PCIe Gen 3.0 x16 add-in card
 - Arria10 FPGA
 • Custom 100 Gb/s DMA engine
 - High-density optical I/O:
 • up to 48 bidirectional GBT ports
 • dedicated fast control port

• Three firmwares:
 - Readout (TELL40)
 - Timing & DAQ supervisor (SODIN)
 - Fast & slow control fan-out (SOL40)
 - Or the three combined: Mini-DAQ for development/testbed

• Only one type of custom hardware in the system
 - Easier maintenance, lower costs
 - Pre-series manufactured, series production to start this year
Event builder: hardware

- ~10000 input links
- Event size up to 150 kB
 → **36 Tbs total event building bandwidth** (40 Tbs with margin)
- Node: TELL40 + off-the-shelf hardware
 - 1 TELL40 (up to 48 inputs)
 - 1 “DAQ” 100 Gb/s NIC (event builder network)
 - 1 “FILTER” 100 Gb/s NIC (output network)
- Need ~500 nodes:
 - Assuming 80% network utilization
Event builder: architecture

- **3 software units:**
 - Readout unit (RU): read and buffer data from TELL40
 - Builder unit (BU): collect event fragments from RUs, send out built events
 - Event manager (EM): decide which BU builds an event

- **Network considerations:**
 - Traffic pattern is **all-to-all** gather:
 - For each event, one BU receives fragments from all RUs
 - Many events → All BUs receive fragments from all RUs
 - Need network with full bisection bandwidth: fat-tree topology
Event builder: scalability

• DAQPIPE: an event-builder benchmark
 - Supports different network technologies:
 • InfiniBand, OmniPath, Ethernet (WiP)
 - Implements RU, BU, EM

• Large parameter space to play with:
 - Communication scheduling
 (linear shift, random)
 - Communication size
 - Number of in-flight communications

• Goal: maximize network usage
 - Not an easy task on fat-trees and similar networks
 - Scheduling and routing are key
 - Collisions (two or more senders using the same network path at the same time) must be avoided

• Reassuring results so far
 - Tested on various 100 Gb/s fat-trees (HPC clusters)
 - Good scalability on InfiniBand with up to 64 nodes
 - Each node gets at least 70% of its maximum
 - Larger scale tests already in the works

![Graph showing per-node throughput (Gb/s) vs. nodes]

- Linear shift
- Random

Per-node throughput (Gb/s)

Nodes
Event builder: communication scheduling

- **Idea:**
 - use the local clock of EB nodes to precisely schedule communications
 - avoid network conflicts
- **Implementation:**
 - Standard linear-shift all-to-all:
 - N servers \rightarrow N phases
 - In phase i, server n sends data to server $m = (n + i) \mod N$
 - Standard fat-tree modulo routing
 - If all servers start each phase at the same time \rightarrow no conflicts on the network links
- **Small scale test:**
 - 32 nodes with NTP-synchronized clocks
 - 1 Gb/s Ethernet fat-tree
- **Promising results:**
 - Nodes get 90% of max throughput with 200 ms phases
 - Should be tested at larger scale
Event filter: architecture

- Basic strategy remains the same as Run 2:
 - First filter: HLT1
 - Fast reconstruction and selection
 - Synchronous with DAQ at 30 MHz
 - Output: ~1 MHz
 - Disk buffer for HLT1-accepted events
 - Second filter: HLT2
 - Full reconstruction and selection
 - Asynchronous (events from disk)
 - Output: ~100 kHz
Event filter: buffer storage

- The disk buffer allows exploiting LHC downtime
 - Maximize event filter farm utilization
 - Need large buffer to absorb long LHC runs:
 ~100 PB for a week’s worth of data

- Currently investigating both centralized and distributed solutions

- Requirements:
 - Must sustain a total of: ~150 GB/s input + ~150 GB/s output
 - I/O pattern:
 1 sequential read stream + 1 sequential write stream per filter node
 - No need for a file-system: an object store is enough
 - Minimal redundancy: some data loss is acceptable
 - Non-uniform data access costs is acceptable:
 filter nodes should process “local” data first
 - A global name-space is desirable for ease of operation and monitoring

Online storage
- 300 GB/s
- ~ 100 PB
- 2–4 k streams
Slow control system

- **Experiment Control System**
 - Based on the same architecture and tools used successfully in Run 1 and 2
 - CERN JCOP framework
 - WinCC-OA SCADA system
 - DIM middleware
Conclusion and outlook

- The LHCb Online system upgrade for Run 3 is an ambitious plan:
 - 30 MHz read-out
 - 40 Tb/s event building and filtering
 - Up to 100 PB buffer storage
 - In 2020!

- The plan execution is proceeding well:
 - Read-out boards, firmware, and associated control software are already well advanced in development
 - The event builder benchmarks present no show-stoppers
 - Implementation evaluations are underway for:
 - Event builder nodes and network
 - Event filter nodes, storage, and network

Big challenges remain: interesting times ahead!