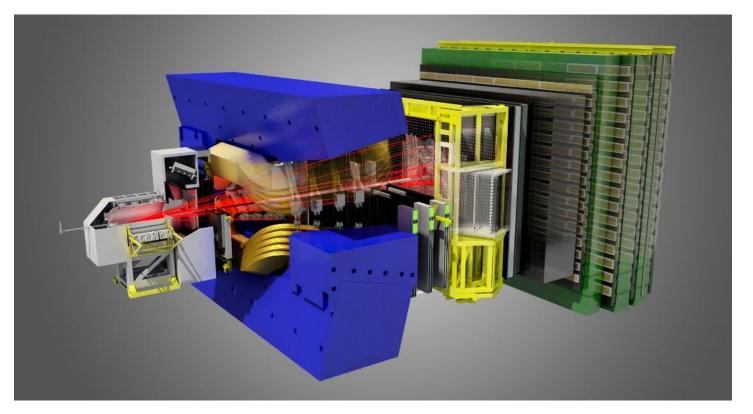
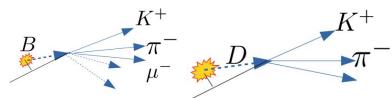


The upgrade of the LHCb trigger for Run III


•••

Rosen Matev, CERN on behalf of the LHCb collaboration

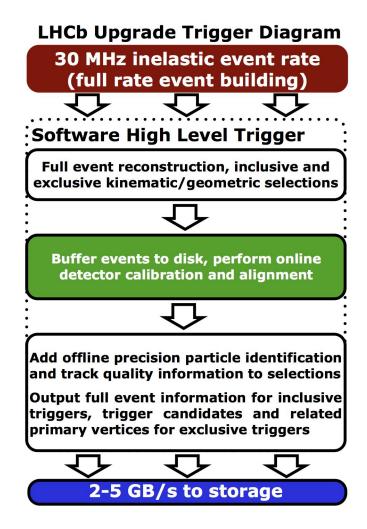

ACAT, 21-25 August 2017 University of Washington, Seattle

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

The LHCb experiment

~45 kHz bb pairs and **~1 MHz** cc pairs at 13 TeV and $L = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

LHCb upgrade


- Precision of many physics measurements at LHCb will be statistically limited at the end of Run II
- Upgrade to cope with $5 \times$ more luminosity (L = 2×10^{33} cm⁻²s⁻¹)
 - Sub-detectors
 - Triggerless read-out
 - Software trigger

LHCb upgrade

See more on read-out in Tommaso Colombo's talk

- Move from 1 to 40 MHz read-out
 - Requires upgrade of many detectors and front-end electronics
- Fully-software trigger with no further offline processing
 - Best possible quality reconstruction
 - Real-time alignment and calibration
 - Persist only the needed high level objects
- All of this already in place today!
 - although in much less challenging conditions

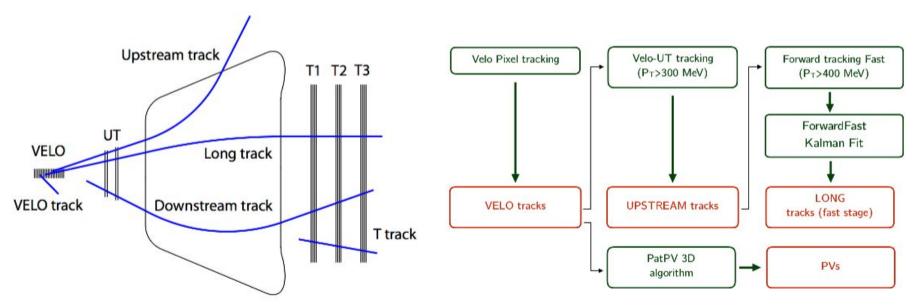
The MHz signal era

- A paradigm shift from Run II
 - 24% (2%) of events contain a reconstructible charm (beauty) hadron
 - o 80 (27) GB/s worth of events usable for analysis
 - We can only afford storing 2-10 GB/s offline
- Not only separate signal and background decay topologies
 - but effectively separate signal decays from other signal decays

Triggers today

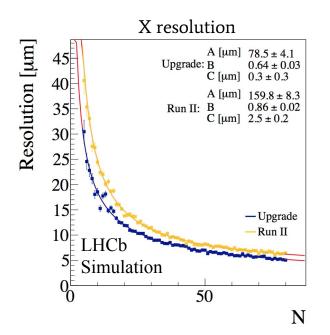
Triggers in the future

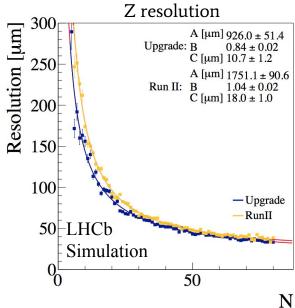
CERN-LHCC-2014-016 LHCb-PUB-2017-005


The MHz signal era

- A paradigm shift from Run II
 - 24% (2%) of events contain a reconstructible charm (beauty) hadron
 - o 80 (27) GB/s worth of events usable for analysis
 - We can only afford storing 2-10 GB/s offline
- Not only separate signal and background decay topologies
 - o but effectively separate signal decays from other signal decays
- Exclusive selections will be the standard
 - Some high rate channels cannot be saved fully even with 100% purity
 - Retain some inclusive triggers for breadth of the physics programme
 - Should be almost the offline selections aim for high purity and efficiency
 - More sensitivity to detector performance effects (e.g. asymmetries)
 - Real-time alignment and calibration will be crucial

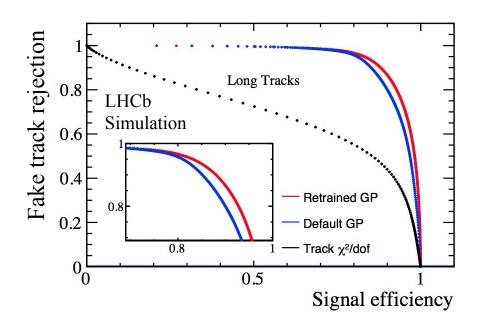
Reconstruction


See more on Run II in Mike Sokoloff's poster


- Take advantage of the Run II trigger strategy
 - Perform a fast reconstruction and selection (HLT1)
 - mainly tracking, vertex finding and inclusive selections
 - reduce bandwidth to a manageable level
 - Buffer events on disk and perform detector alignment and calibration
 - Perform the full reconstruction and selection (HLT2)
 - ultimate track quality and particle identification

Fast reconstruction stage

- Several algorithms to reconstruct tracks fully or partially traversing the detector, and find primary vertices
- The event topology is more complex at the upgrade conditions
 - o 3-4 times more primary vertices and 2-3 times higher track multiplicity
 - Challenging to keep good physics performance and to lower processing time



Predicted PV position resolution as function of number of tracks using MC simulation

Fast reconstruction stage

- Several algorithms to reconstruct tracks fully or partially traversing the detector, and find primary vertices
- The event topology is more complex at the upgrade conditions
 - o 3-4 times more primary vertices and 2-3 times higher track multiplicity
 - Challenging to keep good physics performance and to lower processing time

Predicted ROC curves of fake track classifiers using MC simulation.

Optimisation ongoing.

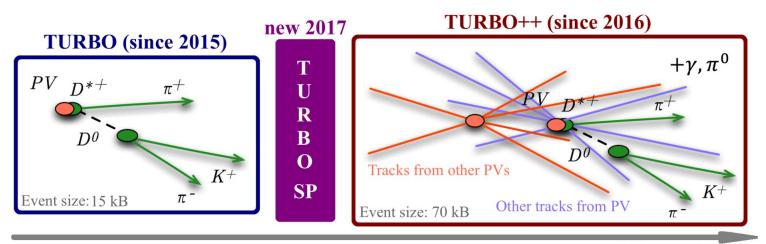
Performance and timing

- Tracking efficiencies look promising
 - Equal to or better than those in the trigger TDR

	Trigger TDR	Fast stage
Fake probability		_
Fake rate	10.9%	5.6%
long	42.7%	42.9%
long, from B	72.5%	72.7%
long, from B, $p_T > 0.5 GeV$	92.3%	92.5%

Performance and timing

- Tracking efficiencies look promising
 - Equal to or better than those in the trigger TDR
- Timing inline with trigger TDR
 - Using the same framework and single threaded paradigms as today's software


Timing [ms]	Trigger TDR	Fast stage
VELO tracking	2.0	2.0
VELO-UT tracking	1.3	0.5
Forward tracking	1.9	2.3
PV finding	0.4	1.1
total	5.6	6.0

Performance and timing

- Tracking efficiencies look promising
 - Equal to or better than those in the trigger TDR
- Timing inline with trigger TDR
 - Using the same framework and single threaded paradigms as today's software
- Throughput performance targets challenging to meet
 - Hardware performance growth at equal cost is slowing dramatically
 - Timing above measured using the software designed a decade ago
 - Concurrency was not a concern in HEP at the time
- A lot of work on new software underway
 - Core framework (Gaudi): built-in thread safety, flexible scheduling, etc.
 - Experiment software: major redesign of algorithms
 - Computing TDR expected at the end of the year
 - See more in Stefan Roiser's and Niko Neufeld's talks

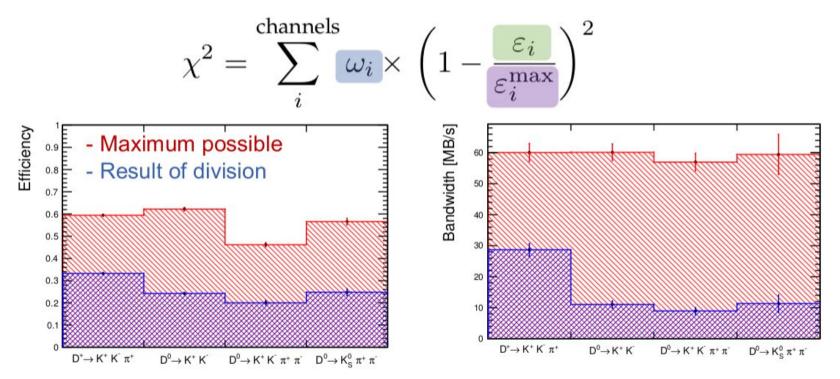
Turbo stream in Run II

- Turbo: analysis with the trigger output
 - Save offline storage by removing raw and uninteresting data
 - Crucial for analyses needing large samples
 - Real-time data reduction ⇒ be flexible in monitoring quality and updating
- Originally, only exclusive decays selected
- Since 2016 the full reconstruction can be persisted
- Since 2017 we can selectively persist anything in between

- How do we divide up the trigger output bandwidth?
 - This is the output to offline storage
 - Finite disk space limits the output BW not the network or trigger
 - TURBO stream: reduced event size more signal events for the same amount of disk space
- Use an automated method to divide between channels
 - BW per channel defined by number of channels and physics priority
 - Need a way to tune the output BW consumed per channel
 - Here we study it using a multivariate classifier approach
 - Proof of principle study using four charm decay modes

Channel	Event size	
$D^+ \rightarrow K^+ K^- \pi^+$	14 kB	
$D^0 \rightarrow K^+K^-$	12 kB	
$D^0 \rightarrow K^+K^-\pi^+\pi^-$	14 kB	
$D^0 \to K_S^0 \pi^+ \pi^-$	70 kB (14kB)	

* Event sizes taken from Run II data

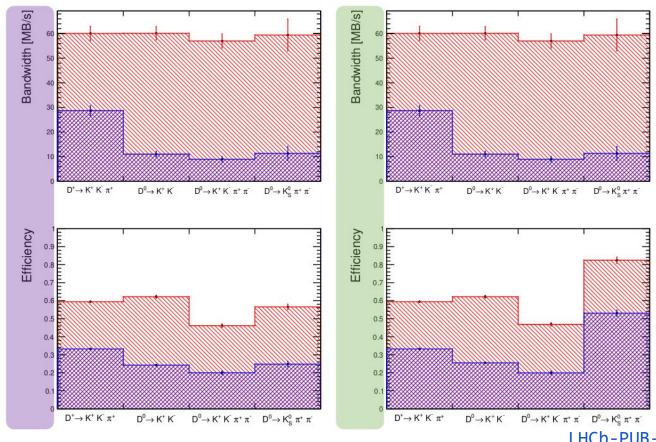

- Minimise the χ^2 by varying the MVA response for each decay
 - Channel weight (unity here, but can be used to prioritise)
 - Channel efficiency
 - Maximum channel efficiency (when given the full output BW)

$$\chi^2 = \sum_{i}^{\text{channels}} \omega_i \times \left(1 - \frac{\varepsilon_i}{\varepsilon_i^{\text{max}}}\right)^2$$

- Assign these channels a 60 MB/s bandwidth limit between them and use the algorithm to divide it up
 - Efficiency calculated from signal MC samples
 - Bandwidth calculated from minimum bias MC sample

$$BW[GB/s] = retention \times rate \times event size[kB/evt.]$$

- Minimise the χ^2 by varying the MVA response for each decay
 - Channel weight (unity here, but can be used to prioritise)
 - Channel efficiency
 - Maximum channel efficiency (when given the full output BW)

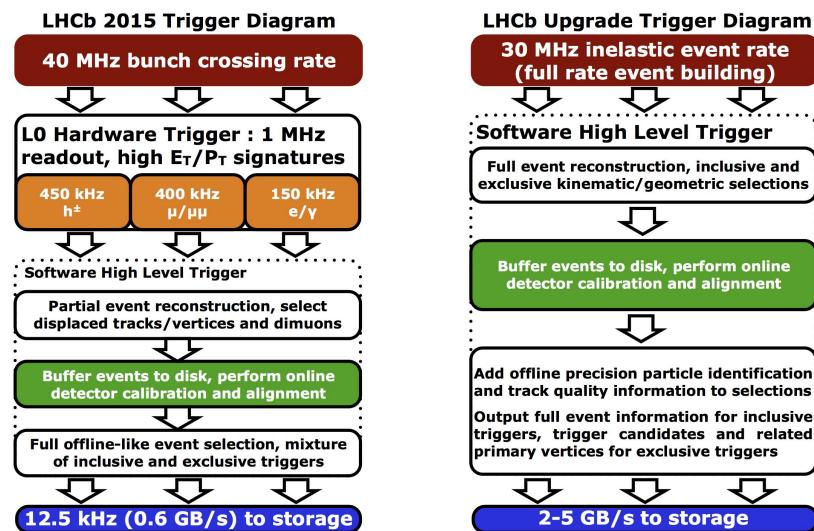


- Minimise the χ^2 by varying the MVA response for each decay
 - Channel weight (unity here, but can be used to prioritise)
 - Channel efficiency
 - Maximum channel efficiency (when given the full output BW)

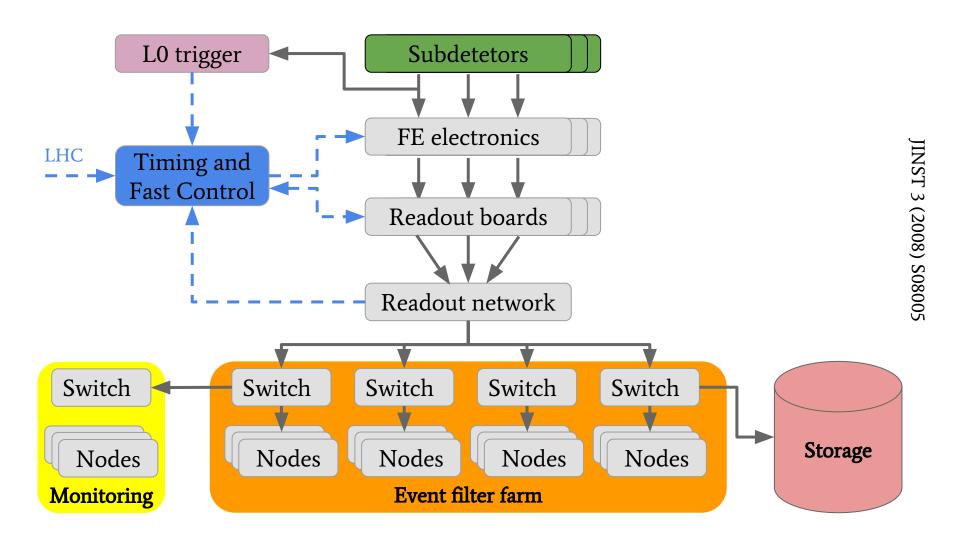
$$\chi^2 = \sum_{i}^{\text{channels}} \omega_i \times \left(1 - \frac{\varepsilon_i}{\varepsilon_i^{\text{max}}}\right)^2$$

- Signal efficiencies will ultimately depend on analyst's ability to define powerful selections
 - Already using machine learning in the trigger and will be more common
 - Reduction of the event size, more signal for the same BW usage

Event size is very important: leads to huge efficiency gains Change from 70 to 14 kB for $D^0 \to K_S^0 \pi^+ \pi^-$

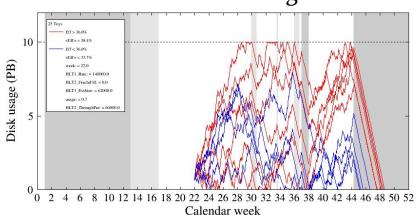


Summary


- In Run II we can do offline quality selections in the trigger thanks to
 - real-time alignment and calibration
 - fully using the online CPU resources (to fit the full offline reconstruction)
- Selectively persisting subset of the event data can already be done
- LHCb upgrade trigger studies well underway
 - Promising performance on simulated data
 - Throughput will improve with adaptation to multithreaded running, employing vectorization and redesigning reconstruction algorithms.
 - Proof of principle for bandwidth division
- Lots more to come in the next couple of years

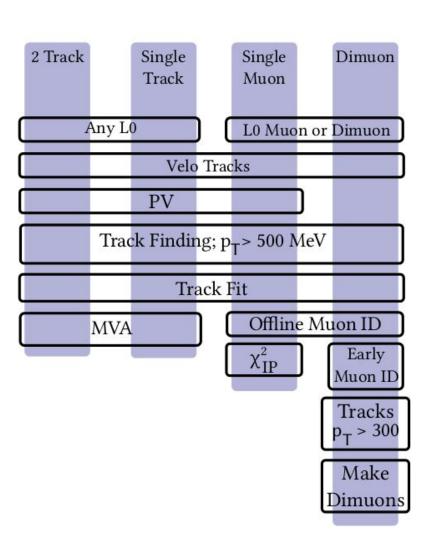
Trigger schematic in Run II and Run III

Run II online system architecture

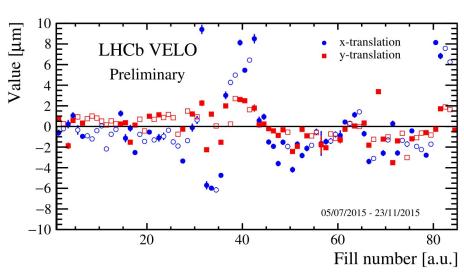

Deferred triggering

- Stable beams ~50% of the time
- Buffer events to disk and process between fills
- Run I
 - Defer 20% of L0 accepted events
 - Effectively 25% more CPU

Run II

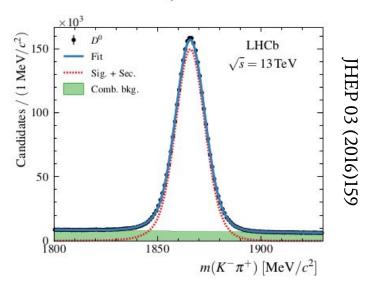

- Defer 100% of HLT 1 accepted events
- More efficient use of buffers due to larger real-time reduction
- Save 100% of events at 150 kHz instead of 20% at 1 MHz
- Use HLT 1 output for calibration and alignment
- 10 PiB in farm (half in 2015)

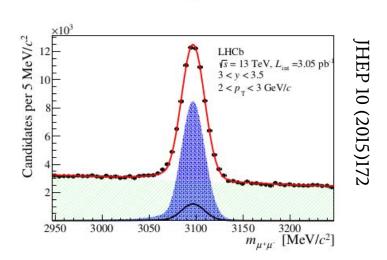
Disk usage models


HLT 1 overview in Run II

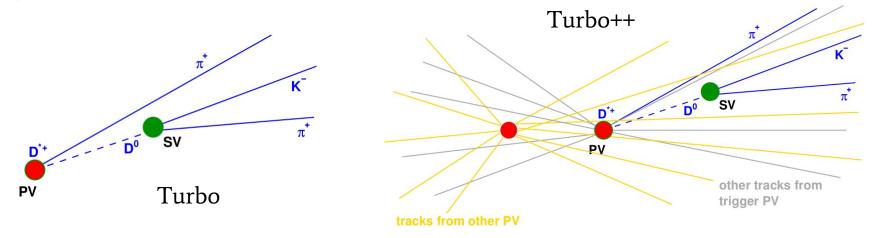
- Inclusive selections, ~100 kHz
 - Single and two track MVA selections
- Inclusive muon selections, ~40
 kHz
 - Single and dimuon selections
 - Additional low pT track reconstruction
- Exclusive selections
 - Lifetime unbiased beauty and charm selections
 - Selections for alignment
- Low multiplicity trigger for central exclusive production analyses

Real-time alignment and calibration


- Alignment and calibration crucial for optimal physics performance
- Alignment per fill
 - Collect suitable data with dedicated HLT 1 selections
 - Run alignment workers on the HLT farm (1 per node)
 - Controller iterates until converged, ~5 min
 - Apply updates of VELO and/or Tracker alignment if needed
 - RICH mirror alignment and muon alignment for monitoring
 - ECAL gain calibration
- Calibration per 1 h run:
 - RICH and Outer Tracker t₀
 - Available ~1 min after
 collection of data


Analyses with TURBO

- Presented preliminary results **one** week after data taking!
- Published Run II measurements performed exclusively with Turbo


Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13 \, \text{TeV}$

Measurement of forward J/ψ production cross-sections in pp collisions at $\sqrt{s} = 13 \,\text{TeV}$

TURBO++

- New in 2016
- Persist arbitrary variables like isolation with HLT candidate
- Can save HLT candidate + any reconstructed objects
 - Custom binary serialization in SOA format, LZMA compression per event
 - Event size of 50 kB, including a minimal subset of the raw data
- Can do qualitatively new things on HLT output
 - o Entire analysis can be done on trigger output, incl. flavour tagging
 - e.g. in charm spectroscopy: $D^* \to D^0(K^-\pi^+)\pi^+$