

Leveraging the checkpoint-restart technique for optimizing CPU efficiency of ATLAS production applications on opportunistic platforms

ACAT 2017, Seattle, USA August 21-25, 2017

Introduction

- * ATLAS uses AthenaMP (multi-process version of its data reconstruction, simulation and analysis framework Athena) for running production workloads on multi-core platforms
- * The sequential phase of an Athena MP job (initialization in the master process) includes:
 - * Loading of shared libraries
 - * Reading of the detector geometry and conditions data from external databases
 - * Building transient representation of the detector geometry
 - Initialization of algorithms and services

Introduction (contd.)

- * ATLAS runs large number of production jobs with similar configuration parameters
 - * E.g. jobs within one Geant4 Simulation production task share the same configuration
 - * The only difference between jobs within such task is which events they need to process
- * For such jobs, instead of going through the same initialization phase over and over again, we can consider the following scenario:
 - * Step 1: run one job from the task through the initialization step and then checkpoint it;
 - * Step 2: distribute the generated checkpoint image over to the compute nodes;
 - * Step 3: restart production jobs from the checkpoint image instead of running them through the initialization phase.
- * This presentation contains some preliminary results of applying this strategy to ATLAS Geant4 Simulation jobs on a Volunteer Computing system and an Intel KNL supercomputer

Checkpointing Tool

- * DMTCP (Distributed MultiThreaded Checkpointing) http://dmtcp.sourceforge.net/
 - * Checkpoints a single host or distributed computation in user space
 - * Does not require kernel-level access
 - * Minimum runtime overhead
- * Has been used for testing the checkpoint-restart mechanism for CMSSW and Geant4 MT
 - * See the presentation by P Elmer in ACAT 2013
- * For our tests so far we have been using DMTCP 2.4.5
 - * Integrated into ATLAS software releases as an external package

Making checkpoint images in AthenaMP

- * The master AthenaMP process checkpoints itself just before forking event processors
 - * Using DMTCP API from within C++ code
- * Once the checkpoint image has been created, the master process exits immediately
- * The checkpoint image together with other auxiliary files (e.g. automatically generated script for restarting) is put into a tarball for later usage
- * In order to activate this mechanism we introduced a special --checkpoint command-line option to ATLAS Job Transform
 - * Job Transform is a python wrapper used for running Athena jobs in production

Restarting AthenaMP from a checkpoint image

- * The location of a checkpoint image is provided to the transform via --restart command-line option
- * The transform unpacks the checkpoint tarball into job's run directory and initiates restart by running the restart script
- * The first thing AthenaMP does after restart is to update a few configuration parameters: numbers of processes to fork, input file name and the number of events to process
 - * This information is provided to AthenaMP by the transform
- * After that the job proceeds as usual

Portability of checkpoint images

- * It is desirable to generate one checkpoint image for a large set of jobs (e.g all jobs within the same production task) and then use it for launching jobs on heterogenous platforms at various sites
 - * ATLAS software is built against SLC6 for production usage
- * This is non-trivial, for DMTCP expects to see the same platform at restart as the one seen at checkpoint
- * In order to overcome this limitation, we can leverage VM/container technology
 - * Create checkpoint image within VM/container and restart within the same VM/container
- * We followed this strategy for testing AthenaMP checkpoint-restart on BOINC
 - Volunteer computing platform used by the ATLAS@Home project

Testing on ATLAS@Home

* ATLAS@Home

- * A volunteer computing project started in 2014
 - * An outreach tool to get the public involved in ATLAS
- * Volunteers run Geant4 simulation inside a VM
- * Based on BOINC platform used in many volunteer computing projects
 - * Built-in support for virtualization using VirtualBox
- * ATLAS@Home is integrated into the ATLAS workflow management system
 - * From the outside it looks like a normal "Grid" site
- * ATLAS@Home is currently an equivalent of a T2 site

Events processed on ATLAS@Home per month since the start of the project. The colors show the transition from single-core (red) to multi-core (yellow) jobs

Testing on ATLAS@Home (contd.)

- * ATLAS@Home makes a good choice for a prototype platform to test checkpoint-restart
 - * Since jobs run in a VM, we are in a complete control of the environment
 - * Volunteers often complain of long initialization times due to reading of external databases
 - * Jobs in ATLAS@Home/BOINC run for 1-2hr, which makes fast initialization rather important
- * Volunteers download a VM disk image once and use it for each job
 - * We create an image with all the necessary software cached in the CVMFS cache
- * For checkpointing tests we created a tarball with a compressed checkpoint image and saved it in the VM image
- * Preliminary tests demonstrated that AthenaMP can restart from the checkpoint image in 15-20 sec, while in case of regular initializations we measured ~4 min for jobs with fast database connections and 10-15 min for jobs with slow database connection

Testing on Intel KNL

* Cori HPC @ NERSC

- * The 5th most powerful supercomputer in the world on the November 2016 list of Top 500 HPC-s
- * Cori Phase 1: 2.4K Intel Xeon "Haswell" nodes
- * Cori Phase 2: 9.7K Intel KNL nodes
 - * 68 cores per node @ 1.4 GHz
 - Each core has 4 hardware threads and two 512-bit-wide vector processing units
 - * Each node has 96 GB DDR4 + 16 GB MCDRAM (multi-channel DRAM) memory
- * In July 2017 ATLAS simulated 55M events with Geant4 on Cori Phase 1&2.

Events simulated on Cori Phase 1&2 in July 2017

Testing on Intel KNL (contd.)

- * On Cori KNL we tested AthenaMP restarts from locally generated compressed and uncompressed images
- * Cori compute nodes represent a homogenous environment, so we don't have to worry about image portability
- * The image tarballs were unpacked into run directories prior to submitting jobs to the batch system
- * The job startup time was measured between launching AthenaMP until the moment it forked event processors
- * The table contains results obtained by running 300 singe-node jobs

	Image size	Startup time (sec)	Startup speedup vs regular AthenaMP
Regular AthenaMP	N/A	663.1 ± 22.8	1
Compressed image	550MB	50 ± 9.7	13.3x
Uncompressed image	1.8GB	20.8 ± 9.1	31.5x

Summary/Outlook/Acknowledgements

- * DMTCP was successfully tested by ATLAS for checkpoint-restarting Geant4 Simulation jobs
- * First tests with production jobs on ATLAS@Home/BOINC and Intel KNL demonstrated that by restarting from checkpoint images we can considerably speedup job startup times
- * However, there is still a long way to go before we can declare our readiness to use the checkpoint-restart technology in production
 - * Automation of the process
 - * Validation of the results
- * The authors would like to thank our volunteer testers in ATLAS@Home (*Yeti* and *MAGIC*) for running the jobs for us and providing useful feedback