
Toward real-time data query systems in HEP

Jim Pivarski

Princeton University – DIANA

August 22, 2017

1 / 39



The dream. . .

LHC experiments centrally manage data from readout to Analysis
Object Datasets (AODs), but the next stage, from AODs to final
plots, is handled separately by each physics group, often copying
the data several times.

Wouldn’t it be nice if physicists could directly turn AOD into plots,
quickly enough for interactive analysis (seconds per scan at most)?

2 / 39



The dream. . .

LHC experiments centrally manage data from readout to Analysis
Object Datasets (AODs), but the next stage, from AODs to final
plots, is handled separately by each physics group, often copying
the data several times.

Wouldn’t it be nice if physicists could directly turn AOD into plots,
quickly enough for interactive analysis (seconds per scan at most)?

3 / 39



Why this would be a Good Thing

I Users could plot the data before deciding what to keep.

(Even if they do need skims for maximum likelihood fits, etc,

these can be better streamlined after exploratory plotting.)

I Focus on physics and statistical issues, not data handling.

I Centralization facilitates provenance and reproducibility.

I Shared CPU, disk, and memory can be more efficient.

I Small institutions would not be “priced out” of analysis
for lack of resources to copy and locally process the data.

4 / 39



Existence proof

In some industries, it is possible to “process petabyes of data and
trillions of records in seconds1,” usually as SQL.

In fact, there are many low-latency query server engines available,
mostly open source.

Apache Drill comes closest to fitting our needs, but it’s

I SQL (not expressive enough for HEP)

I Java (hard to link to HEP software)

I more suited to “flat ntuple” analysis (see next slides).

1https://wiki.apache.org/incubator/DrillProposal
5 / 39

https://wiki.apache.org/incubator/DrillProposal


Existence proof

In some industries, it is possible to “process petabyes of data and
trillions of records in seconds1,” usually as SQL.

In fact, there are many low-latency query server engines available,
mostly open source.

Apache Drill comes closest to fitting our needs, but it’s

I SQL (not expressive enough for HEP)

I Java (hard to link to HEP software)

I more suited to “flat ntuple” analysis (see next slides).

1https://wiki.apache.org/incubator/DrillProposal
6 / 39

https://wiki.apache.org/incubator/DrillProposal


Toward a query system for HEP

This talk is about what we would need to make (or alter) a
query system for HEP analysis:

I fast execution on nested, non-flat data

I distributed processing: caching and data locality,
uneven and changing dataset popularity, aggregation

I HEP-specific query language (in the abstract for this
talk, but I’m going to focus more on the above)

7 / 39



Fast execution

8 / 39



The core issue

SQL-like query engines are optimized for what we’d call a “flat
ntuple analysis”— rectangular table of numbers, sliced, filtered,
aggregated, and joined.

Only some late-stage HEP analyses fit this model, not AOD.

In general, physics analysis requires arbitrary-length lists of objects:
e.g. events containing jets containing tracks containing hits.

But frameworks that create physics objects at runtime would be
slow to process as queries.

9 / 39



The core issue

SQL-like query engines are optimized for what we’d call a “flat
ntuple analysis”— rectangular table of numbers, sliced, filtered,
aggregated, and joined.

Only some late-stage HEP analyses fit this model, not AOD.

In general, physics analysis requires arbitrary-length lists of objects:
e.g. events containing jets containing tracks containing hits.

But frameworks that create physics objects at runtime would be
slow to process as queries.

10 / 39



The core issue

SQL-like query engines are optimized for what we’d call a “flat
ntuple analysis”— rectangular table of numbers, sliced, filtered,
aggregated, and joined.

Only some late-stage HEP analyses fit this model, not AOD.

In general, physics analysis requires arbitrary-length lists of objects:
e.g. events containing jets containing tracks containing hits.

But frameworks that create physics objects at runtime would be
slow to process as queries.

11 / 39



The core issue

SQL-like query engines are optimized for what we’d call a “flat
ntuple analysis”— rectangular table of numbers, sliced, filtered,
aggregated, and joined.

Only some late-stage HEP analyses fit this model, not AOD.

In general, physics analysis requires arbitrary-length lists of objects:
e.g. events containing jets containing tracks containing hits.

But frameworks that create physics objects at runtime would be
slow to process as queries.

12 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

13 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

14 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

15 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

16 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

17 / 39



Illustration with a microbenchmark

Query: fill a histogram with jet pT of all jets.

0.018 MHz full framework (CMSSW, single-threaded C++)

0.029 MHz load all 95 jet branches in ROOT

2.8 MHz load jet pT branch (and no others) in ROOT

12 MHz allocate C++ objects on heap, fill, delete

31 MHz allocate C++ objects on stack, fill histogram

250 MHz minimal “for” loop in memory (single-threaded C)

Four orders of magnitude in performance lost to provide an
object-oriented view of the jets, with all attributes filled.

18 / 39



Alternative

Instead of turning TBranch data into objects, translate the
code into loops over the raw TBranch arrays (“BulkIO”).

User writes code with “event” and “jet” objects:
histogram = numpy.zeros(100, dtype=numpy.int32)

def fcn(roottree, histogram):
for event in roottree:

for jet in event.jets:
bin = int(jet.pt)
if bin >= 0 and bin < 100:

histogram[bin] += 1

which are translated into indexes over raw arrays:
void fcn(int* events, int* jets, float* jetptdata, int* histogram) {

int event, jet;
for (event = 0; event < events[1]; event++)

for (jet = jets[event]; jet < jets[event + 1]; jet++) {
int bin = (int)jetptdata[jet];
if (bin >= 0 && bin < 100)

histogram[bin] += 1;
}}

19 / 39



Performance on real queries

Four sample queries (see backup) using ROOT 1. without dropping
branches, 2. dropping branches (SetBranchStatus), 3. using a

slimmer file, 4. with BulkIO and transformed Python code .

ROOT full dataset ROOT selective on full ROOT slim dataset

PLUR full dataset

0
max pT eta of best

by pT

mass of
pairs

pT sum of
pairs

5

10

15

20

25

R
at

e 
in

 M
H

z 
(h

ig
he

r i
s 

be
tte

r)

20 / 39



Performance on real queries

Four sample queries (see backup) using 4. same ROOT with
BulkIO and transformed Python code, 5. raw arrays on SSD disk,
6. raw arrays in memory. (Caching system for query server.)

PLUR full dataset

0
max pT eta of best

by pT

mass of
pairs

pT sum of
pairs

20

40

60

80

R
at

e 
in

 M
H

z 
(h

ig
he

r i
s 

be
tte

r)
PLUR raw SSD disk PLUR raw memory

21 / 39



You can try this out

Our PLUR library1 puts Primitive, List, Union, and Record data
into flat arrays and translates Python code to do array lookups.

The translated Python is then compiled by Numba2 (Python
compiler for numerical algorithms) into fast bytecode.

BulkIO contributions to ROOT3 allow ROOT TBranch data to be
rapidly viewed as Numpy arrays (10× faster than root numpy).

This is being gathered into a HEPQuery application4 to provide a
query service. See the READMEs for more realistic examples.

1https://github.com/diana-hep/plur
2http://numba.pydata.org/
3https://github.com/bbockelm/root/

tree/root-bulkapi-fastread-v2
4https://github.com/diana-hep/hepquery/

22 / 39

https://github.com/diana-hep/plur
http://numba.pydata.org/
https://github.com/bbockelm/root/tree/root-bulkapi-fastread-v2
https://github.com/bbockelm/root/tree/root-bulkapi-fastread-v2
https://github.com/diana-hep/hepquery/


Distributed processing

(10’s of MHz rates on previous page were all single-threaded)

23 / 39



Challenges: not a standard batch job

Overhead latency should be small enough for interactive use (less
than a second).

Query-to-plot requires two phases: splitting into subtasks (map)
and combining partial results (reduce). These must be coordinated.

Input data should be cached with column-granularity.

Subtasks should preferentially be sent where their input data are
cached (for data locality), but not exclusively (to elastically scale
with dataset popularity).

24 / 39



Challenges: not a standard batch job

Overhead latency should be small enough for interactive use (less
than a second).

Query-to-plot requires two phases: splitting into subtasks (map)
and combining partial results (reduce). These must be coordinated.

Input data should be cached with column-granularity.

Subtasks should preferentially be sent where their input data are
cached (for data locality), but not exclusively (to elastically scale
with dataset popularity).

25 / 39



Challenges: not a standard batch job

Overhead latency should be small enough for interactive use (less
than a second).

Query-to-plot requires two phases: splitting into subtasks (map)
and combining partial results (reduce). These must be coordinated.

Input data should be cached with column-granularity.

Subtasks should preferentially be sent where their input data are
cached (for data locality), but not exclusively (to elastically scale
with dataset popularity).

26 / 39



Challenges: not a standard batch job

Overhead latency should be small enough for interactive use (less
than a second).

Query-to-plot requires two phases: splitting into subtasks (map)
and combining partial results (reduce). These must be coordinated.

Input data should be cached with column-granularity.

Subtasks should preferentially be sent where their input data are
cached (for data locality), but not exclusively (to elastically scale
with dataset popularity).

27 / 39



Distributed state

To track ongoing jobs, accumulate partial histograms, and know
where to find cached inputs, the query server will need to have
distributed, mutable state.

Use third-party tools!

I Apache Zookeeper for rapidly changing task assignment.

I MongoDB for JSON-structured partial aggregations.

I Object store (Ceph?) for user-generated columns?

I . . . ?

Although we can’t find exactly what we want on the open-source
market, we’re finding most of the pieces.

28 / 39



Distributed state

To track ongoing jobs, accumulate partial histograms, and know
where to find cached inputs, the query server will need to have
distributed, mutable state.

Use third-party tools!

I Apache Zookeeper for rapidly changing task assignment.

I MongoDB for JSON-structured partial aggregations.

I Object store (Ceph?) for user-generated columns?

I . . . ?

Although we can’t find exactly what we want on the open-source
market, we’re finding most of the pieces.

29 / 39



Distributed state

To track ongoing jobs, accumulate partial histograms, and know
where to find cached inputs, the query server will need to have
distributed, mutable state.

Use third-party tools!

I Apache Zookeeper for rapidly changing task assignment.

I MongoDB for JSON-structured partial aggregations.

I Object store (Ceph?) for user-generated columns?

I . . . ?

Although we can’t find exactly what we want on the open-source
market, we’re finding most of the pieces.

30 / 39



Prototype

Thanat Jatuphattharachat (CERN summer student) project:
explore third party tools1 and build a prototype system2.

1https://cds.cern.ch/record/2278211
2https://github.com/JThanat/femto-mesos/tree/master

31 / 39

https://cds.cern.ch/record/2278211
https://github.com/JThanat/femto-mesos/tree/master


See Igor Mandrichenko’s poster!

32 / 39



Query language

33 / 39



Femtocode

Femtocode1 is a mini-language based on Python, but with
sufficient limitations to allow SQL-like query planning.

I Dependent type-checking to ensure that every query
completes without runtime errors.

I Automated vectorization/GPU translation by controlling the
loop structure.

I Integrates database-style indexing with processing.

But these are all “2.0” features.

1https://github.com/diana-hep/femtocode/
34 / 39

https://github.com/diana-hep/femtocode/


Conclusions

35 / 39



Conclusions!

I AOD-to-plot in seconds is possible.

I They’re doing it in industry (but. . . SQL and Java).

I Python-based queries can be computed at single-threaded
rates of 10–100 MHz by translating code, rather than
deserializing data.

I Columnar data granularity has useful consequences.

See Igor’s poster!

I Prototyping distributed architecture, relying on third-party
components wherever possible.

36 / 39



Backup

37 / 39



Sample queries

max pT in Python

maximum = 0.0
for muon in event.Muon:

if muon.pt > maximum:
maximum = muon.pt

fill_histogram(maximum)

max pT in C++

float maximum = 0.0;
for (i=0; i < muons.size(); i++)

if (muons[i]->pt > maximum)
maximum = muons[i]->pt;

fill_histogram(maximum);

eta of best by pT in Python

maximum = 0.0
best = -1
for muon in event.muons:

if muon.pt > maximum:
maximum = muon.pt
best = muon

if best != -1:
fill_histogram(best.eta)

eta of best by pT in C++

float maximum = 0.0;
Muon* best = nullptr;
for (i=0; i < muons.size(); i++)

if (muons[i]->pt > maximum) {
maximum = muons[i]->pt;
best = muon; }

if (best != nullptr)
fill_histogram(best->eta);

38 / 39



Sample queries

mass of pairs in Python

n = len(event.muons)
for i in range(n):
for j in range(i+1, n):

m1 = event.muons[i]
m2 = event.muons[j]
mass = sqrt(
2*m1.pt*m2.pt*(
cosh(m1.eta - m2.eta) -
cos(m1.phi - m2.phi)))

fill_histogram(mass)

mass of pairs in C++

int n = muons.size();
for (i=0; i < n; i++)

for (j=i+1; j < n; j++) {
Muon* m1 = muons[i];
Muon* m2 = muons[j];
double mass = sqrt(
2*m1->pt*m2->pt*(
cosh(m1->eta - m2->eta) -
cos(m1->phi - m2->phi)));

fill_histogram(mass); }

pT sum of pairs in Python

n = len(event.muons)
for i in range(n):
for j in range(i+1, n):

m1 = event.muons[i]
m2 = event.muons[j]
s = m1.pt + m2.pt
fill_histogram(s)

pT sum of pairs in C++

int n = muons.size();
for (i=0; i < n; i++)

for (j=i+1; j < n; j++) {
Muon* m1 = muons[i];
Muon* m2 = muons[j];
double s = m1->pt + m2->pt;
fill_histogram(s); }

39 / 39


