
Parallel	Random	Number	Generation	for	SIMD/SIMT
Soon	Yung	Jun1,	Philippe	 Canal1,	John	Apstolakis2

1		Fermi	National	Accelerator	Laboratory			2	CERN	

Contact:	syjun@fnal.gov

Abstract

Parallel pRNG for SIMD/SIMT

[1] VecCore: https://github.com/root-project/veccore
[2] P. L'Ecuyer, R. Simard, E.J. Chen, W.D. Kelton, An object-oriented random number package with many long
streams and substreams, Operations Research 50 (2002) 1073-1075
[3] K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, Parallel random numbers: as easy as 1 , 2 , 3 , International Conference
for High Performance Computing , Networking, Storage and Analysis, ACM (2011) pp. 16:1-16:12
[4] Intel® MKL/VSL library, Intel Parallel Studio 2016
[5] NVIDIA® Curand library, http://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
[6] Amadio G et al, Electromagnetic Physics Models for Parallel Computing Architectures, J.	Phys.:	Conf.,	Series	523 012004

• Demonstrated a comom implementation of puedo random number generation for
SIMD and SIMT architecture using VecCore

• Measured peformance of parallel random number generation for example generators
(MRG32k3a, Threefry and Philox of Random123) and compared their performance to
corresponding generators from MKL/VSL and NVIDIA cudrand libraries

• Sizable gain by an explicit vectorization for MRG32k3a
• GPU performance comparable to Curand [4] for MRG32k3a
• Philox (32x10) shows good performance on CPU
• SIMD Vectorization of XOP operations need to be studied further

• Future work: Reproducibility under hybrid computing environments

Design Consideration

Ø Template Approach (Static Polymorphism)
Ø Support Scalar, Vector (SIMD) and GPU
Ø Common kernels (portability)
Ø Statistical properties
Ø Performance (CPU and memory)
Ø Reproducibility

Conclusions

References

Efficient random number generation with high quality statistical properties is one of important components of Monte
Carlo simulation in many areas of computational science. As high performance parallel computing systems equipped with
deeper vector pipelines or many-cores technologies are widely used, a variety of parallel pseudo-random number generators
(PRNGs) have been developed for specific hardware architectures such as SIMD or GPU (SIMT). However, concurrent
random number services for hybrid computing models are not commonly available. In this report, we present design
considerations, implementation details and preliminary computing performance of parallel PRNG engines which support
both SIMD and SIMT with multiple independent streams of random number sequences.

m = SIMD vector, or SIMT threads

Pseudo-Random Number Generation

Examples of Implementation

Performance Measurement

• Common Kernels are used for both SIMD and SIMT using VecCore[1]

Algorithm-basis vs. Counter-basis Generators

Associated requirements

• Optimizing performance of Random123 (XOR operation)
• Testing with SIMD/SIMT tasks (ex. vectorized physics processes and models [6])
• Reproducibity tests under multi-threaded workflows

Parallel Random Number Generation

CPU : Intel(R)	Xeon(R)	CPU	E5-2620	(12	cores	@	2.00GHz)
GPU : NVIDIA Tesla	 K20m	(2496	CUDA	cores	@	0.71GHz)
Average	 Time	[ms]	for	generating	 10M	random	numbers	(200	measurements)		

Base: VecRNG

si-1 si uk,jf gk,j si-1 si uk,jF Gk,j

si-1 = (s1, s2, … sm)i-1

uk,j = (u1, u2, … um)k,j

F

Gk,j

Backend
VecCore[1]

SIMD

SIMT

Algorithm Counter

f complicated simple

b - complicated

h simple medium

Random123 [3]

• A common pRNG service for hybrid computing models
• Multiple streams (threads) and sub-streams (tasks)
• Efficient jumping ahead and easy to assign streams
• Reproducibility for multiple threaded applications or concurrent tasks
• Several pRNGs may cooperate together for independent tasks

MRG32k3a [2]

Ex.	𝔽2-Linear	modulo	 m

LFSR,	GFSR	MT,	 WELL,	… AES,	ARS

Strong	block	cipher

Common
Kernels

Common
pRNG

Vectorization

Work in Progress

Scalar Vector	(SSE) CUDA MKL/VSL✽ Curand❖

MRG32k3a 209.25	± 0.07	 123.58 ± 0.03 2.03 ± 0.03 145.50 ± 0.06	 2.05	± 0.02

Threefry	☞ 129.65	± 0.06 123.47 ± 1.19 10.22	± 0.02	 N/A N/A

Philox	 ☞ 100.78	± 0.04 225.82 ± 0.46 10.17	± 0.01 N/A 1.92	± 0.01

std::rand() = (139.98 ± 0.06) ms

✽ Perofrmance and quality of the Intel MKL/VSL[4] random number generation depend on the size of
output array: using N=32 for this measurement

v Curand library[5] (cuda 8.0, arch=sm_3.5), using (26 blocks x 192 threads)
☞ Word size (W) and round (R) used for Random-123: Threefry (W4x32_R20) and Philox (W4x32_R10)

VecRNG

MRG32k3a Threefry Philox Others

Class Derived: publicVecRNG<Derived>

➞ ➞ ➞

➞

➞

