
Provisioning of data locality

for HEP analysis workflows

C Heidecker, M J Schnepf, E Kuehn, M Fischer, M Giffels and G
Quast

KIT - Karlsruhe Institute of Technology, Germany

E-mail: {christoph.heidecker, matthias.schnepf, eileen.kuehn, max.fischer,

manuel.giffels, guenter.quast}@kit.edu

Abstract. The heavily increasing amount of data produced by current experiments in high
energy particle physics challenge both end users and providers of computing resources. The
boosted data rates and the complexity of analyses require huge datasets being processed in
short turnaround cycles. Usually, data storages and computing farms are deployed by different
providers, which leads to data delocalization and a strong influence of the interconnection
transfer rates. The CMS collaboration at KIT has developed a prototype enabling data locality
for HEP analysis processing via two concepts. A coordinated and distributed caching approach
that reduce the limiting factor of data transfers by joining local high performance devices with
large background storages were tested. Thereby, a throughput optimization was reached by
selecting and allocating critical data within user work-flows. A highly performant setup using
these caching solutions enables fast processing of throughput dependent analysis workflows.

1. Introduction
Performance of data analysis applications is primarily bounded by how fast data is read and
processed [1]. While processing speed depends on local resources, read speed may depend on
a series of connections to a remote data storage. A close proximity of processing and storage
resources can improve bandwidth by avoiding bottlenecks and congestion of shared connections.
The term data locality refers to this proximity of processing applications and data sources.

For High Energy Physics (HEP), the granularity of the Worldwide LHC Computing Grid
(WLCG) [2] allows data locality only at the scale of computing centres. In contrast, distributed
storage frameworks [3, 4] achieve data locality at the scale of racks and hosts. However, this
approach requires high-performance storage on processing nodes with sufficient volume to hold
all data. Given large data volumes and only partial data access at any time, as is common in
HEP, the utilisation of such a system is low.

In the past, we developed on-demand data locality at host granularity [1, 5, 6, 7, 8] for HEP
analyses: individual, high-performance caches in a batch system are coordinated to provide
popular data from background storage. This significantly improves processing speed of recurring
analyses, which also frees resources for unique analyses.

However, our research suggests that host granularity for data locality is not always desirable:
optimal locality provides excess read speed compared to processing speed, and considerably
complicates scheduling. Instead, data locality is best approached as a spectrum (see Figure 1),
where performance limits and infrastructure complexity are balanced.



pull
data

(a) Global access (b) Adjacent access

pre-placement

(c) Local access

Figure 1: Spectrum of data locality: Treating data locality as a binary decisions, data consumers
access data either globally or locally. However, this also defines the extremes of a spectrum,
where data is accessed with a given adjacency, that is a level of data locality.

2. Caching for on-demand data locality
Data locality via caching can be split into two separate challenges: First, selecting which input
data to provide in order to improve performance. Second, directing consumers to the location
of their input data. This translates to two interleaved scheduling problems, both suitable to
optimise data processing.

We use a generalised model for data processing, derived from HEP batch processing but not
strictly bound to it: Data analysis is organised as workflows, each applying a specific analysis
application to a dataset, a subset of the entire data volume. This is realised by executing multiple
jobs concurrently, instances of the same application processing non-overlapping portions of the
dataset. The execution environment is distributed, with distinct execution hosts sharing a single
global namespace to separate data storage.

2.1. Locality preselection
The processing infrastructure we target is already suitable to efficiently process a fraction
of workflows. This is already satisfied if some workflows perform simulation, which require
practically no input bandwidth. From our experience, many data processing workflows are also
not optimized enough to exhaust bandwidth. In effect, there is a fraction of workflows which
does not benefit from caching at all.

Any data accessed only by such workflows can be culled from caching. This reduces the
effective data volume, in turn increasing the relative size of caches. Thus, even with small cache
sizes, acceptable cache hit rates and low cache trashing are achievable. While many workflow
have no direct benefit of caching, they still benefit from processing resources being freed faster.

2.2. Concurrency optimisation
While caches work with individual jobs, our goal is the optimisation of total workflow
throughput. This goal must be reflected in the strategy to select and distribute data for caching:
the concurrent data access by many jobs of a workflow is the optimisation scenario1. Regardless
of infrastructure details, this can be effectively achieved by reducing congestion on each data
source.

For this goal, individual caches are beneficial as additional, not necessarily faster, data
sources. Workflow dataset portions should be spread over as many caches as possible with
the splitting by jobs. Notably, global storage is also a viable data source; a fraction of each
dataset should be excluded from caching to exploit this capacity.

1 Notably, an isolated job has little benefit from caching in our use case. SSD and HDD caches offer bandwidths
of 1 Gbit/s to 5 Gbit/s compared to network bandwidths of 1 Gbit/s to 10 Gbit/s.



SSD

Cache

Node 1

SSD

Cache

SSD

Cache

SSD

Cache

Coordinator

(a) Coordinated caching

Distributed cache

HDDs HDDs HDDs HDDs

(b) Distributed caching

Figure 2: Caching Scenarios: Coordinated caching uses isolated caches, which form a single
service via coordination. Distributed caching forms a single cache, which is delocalised across
multiple hosts.

3. Prototypes for HEP batch systems caching
To study the spectrum of on-demand data locality, we have implemented two caching scenarios
(see Figure 2): First, caches local to processing hosts are coordinated to implement a global
caching strategy. Second, a single cache distributed across all processing hosts of the cluster.
For comparability, the prototypes for each scenario are deployed on the same processing hosts.

The prototypes are deployed in the KIT CMS Tier 3 analysis cluster, alongside other
extensions [10]. Jobs are scheduled and deployed with the HTCondor batch system [9]: On
the one hand, this allows us to inject locality information into job scheduling. On the other
hand, services are deployed on a recent operating system, with job dependencies supplied via
docker [11]. For technical details of our middleware, see previous publications [1, 5, 6, 7, 8].

3.1. Coordinated caching
To achieve ideal data locality, each cache is accessible only from its associated processing host.
Jobs read data either from the local cache, or the global storage. Only metadata is accessible
across hosts. To form a single service working at the scale of entire workflows, an additional
coordination layer is required. Data selection is performed at this global level, and portions of
the selected data assigned to specific caches.

Coordination allows the highest control, and thus optimisation, of locality. Both data
selection and data locality can be dynamically adjusted to match the currently running and
queued workflows. Since components exchange only metadata, the system is highly scalable both
horizontally and vertically. In addition, processing nodes can be operated outside of dedicated
clusters, as long as a local cache is available.

3.2. Distributed caching
To allow easier data locality, each cache is accessible also from adjacent processing hosts. We
achieve this with a single, distributed cache pool spanning across all nearby hosts. Jobs read
data from an arbitrary host of the pool, or the global storage. The entire cache pool acts as one
service, being able to service entire workflows. While there is no distinction between local and
adjacent access, data and jobs do not require assignment to specific hosts.

Distribution simplifies job and data management, eliminating the risk of cache misses due
to placement. A global strategy can be directly applied to the entire cache pool. As the entire
cache pool is used at once, concurrency of data access is automatically smoothed out between
hosts; cache devices on each node do not have to deliver a broad performance range. Finally,
capacity of resources between hosts can be used, such as fast inter-rack network.



0 20 40 60 80 100

Number of parallel streams

0

500

1000

1500

2000

2500

To
ta

l r
ea

d 
ra

te
 (M

B/
s)

Benchmark of stream dependent read rate

Coordinated caching: 1SSD/node
Distributed caching: 10HDDs
Network Storage
Deserialization/Extraction limit

Figure 3: Performance of data
sources: Throughput of synthetic,
concurrent data streaming. All
streams are equally distributed
across 4 processing hosts. SSD and
HDD devices are local to hosts,
while network storage is shared.
The Deserialisation/Extraction
limit is extrapolated from analysis
workflows.

4. Experience and evaluation
We have used processing hosts in a single rack for controlled evaluation of the two caching
scenarios. All data accesses use POSIX, with an overlay file system [12] transparently merging
cache and background storage. While coordinated caching directly uses SSD devices, distributed
caching uses CEPH [13] to integrate HDDs on all hosts. Notably, the HDD data capacity is 20
times the total SSD data capacity, but we use 2.5 times as many HDD devices. For controlled
throughput tests, data has been manually pinned to caches.

4.1. Concurrent throughput
We have deployed both synthetic performance tests (see Figure 3) and orchestrated analysis
workflows for testing. In general, caches add significant additional bandwidth of 5 Gbit/s per
host. SSD caches offer superior response for few concurrent accesses - even with fewer devices,
they offer superior performance for any number of streams. However, the HDD cache still
provides comparable overall throughput.

For the synthetic test, throughput for both cache setups saturates at 25% cluster utilisation.
However, HEP analysis workflows cannot process this throughput, even under ideal conditions
- the ROOT [14] dataformat adds overhead for extracting and deseralising data. Even at full
cluster utilisation, both cache scenarios offer sufficient throughput for analyses to be compute
bound. As a result, caching a fraction of input data is sufficient for optimal performance.

4.2. Applicability and use-cases
We have found both caching scenarios to significantly improve data analysis throughput.
Since both scenarios overprovision throughput, they are equally sufficient for our environment.
However, their differences in complexity and scalability make them ideal for different use cases
in the future.

Coordinated caching benefits from processing hosts having no additional dependencies on
infrastructure. Due to the shared-nothing architecture, caches can be volatile, and can be added
and removed from a cluster at any time. This allows dynamically deploying isolated processing
hosts outside of dedicated computing centers [15].

Distributed caching offers significantly lower complexity for configuration. Given the lower
placement constraint to achieve locality, scheduling requires less tuning. Overall, we feel that
distributed caching is the correct choice for dedicated computing centres.

5. Summary and outlook
Data locality is a requirement to exploit available processing resources of modern hardware.
Caching offers an effective way to provide data locality on-demand. We have developed and
evaluated two similar but distinct caching scenarios: Coordinated caching shares only the



most basic information, making it ideal for dynamic processing resources. Distributed caching
enhances many processing hosts at once, allowing for a simple adoption in an existing cluster.

Still, the approach offers potential for future improvements and applications. From a
conceptual point of view, the two scenarios can be combined - by coordinating cache pools,
efficient data analysis can be enabled across clusters. Furthermore, extending support to grid
protocols such as xrootd, caching and thus data analysis could be extended to opportunistic
resources as well.

Acknowledgment
The authors wish to thank the German Helmholtz Association, and the Karlsruhe School of
Elementary Particle and Astroparticle Physics (KSETA) for supporting and funding the work.
The authors acknowledge also support by the state of Baden-Württemberg through bwHPC and
the German Research Foundation (DFG).

References
[1] Fischer M, Metzlaff C, Giffels M, Jung C, Kuehn E, Hauth T and Quast G 2015 High performance data

analysis via coordinated caches, CJ. Phys.: Conf. Ser. 664 092008
[2] Eck C et al., 2005, LHC computing Grid : Technical Design Report, Technical Design Report LCG,

https://cds.cern.ch/record/840543
[3] The Hadoop project homepage, URL http://hadoop.apache.org/
[4] Dean J and Ghemawat S 2004 MapReduce: Simplified Data Processing on Large Clusters, OSDI’04: Sixth

Symposium on Operating System Design and Implementation
[5] Fischer M, Giffels M, Jung C, Kuehn E, and Quast G 2015 Tier 3 batch system data locality via managed

caches, J. Phys.: Conf. Ser. 608 012018
[6] Fischer M and Kuehn E 2016 Data Locality via Coordinated Caching for Distributed Processing, CLOUD

COMPUTING 2016
[7] Fischer M, 2016, Coordinated caching for high performance calibration using Z → µµ events of the CMS

experiment Karlsruher Institut für Technologie (KIT) http://dx.doi.org/10.5445/IR/1000067354
[8] Heidecker C 2017 C Absolute jet energy scale determination at the CMS detector for LHC run 2 at

√
s = 13 TeV

using an optimized processing setup, URL: https://ekp-invenio.physik.uni-karlsruhe.de/record/48877
[Accessed 2017-10-12]

[9] Thain D, Tannenbaum T and Livny M 2005 Distributed computing in practice: the Condor experience,
Concurrency Computat.: Pract. Exper. 17 32356 (doi: 10.1002/cpe.938)

[10] Fischer F et al. 2017 On-demand provisioning of HEP compute resources on cloud sites and shared HPC
centers, Journal of Physics: Conference Series

[11] Schnepf M 2017 Calculation of cross-section limits for the production of single top quarks in association with
a Higgs boson using container technologies, URL: https://ekp-invenio.physik.uni-karlsruhe.de/record/48876
[Accessed 2017-10-12]

[12] Junjiro Okajima, ”aufs” [software], version 4.13.5, Available from http://aufs.sourceforge.net/ [accessed 2017-
10-16]

[13] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, Carlos Maltzahn, 2006, ”Ceph:
A Scalable, High-Performance Distributed File System”, USENIX Association Proceedings of the
7th Conference on Operating Systems Design and Implementation (OSDI 06), http://ceph.com/wp-
content/uploads/2016/08/weil-ceph-osdi06.pdf

[14] CERN, ”ROOT - Data Analysis Framework” [software], version 5.34, Available from https://root.cern.ch/
[accessed 2017-10-16]

[15] Schnepf MJ et al. 2017 Mastering Opportunistic Computing Resources for HEP, Journal of Physics:
Conference Series Proceedings of 18th International Workshop on Advanced Computing and Analysis
Techniques (to be published)


