The Management of Heterogeneous Resources in Belle II

Proudly Operated by Battelle Since 1965

Belle II Overview

- **Goal**: discover new particles and phenomena beyond the Standard Model of particle physics
- Collaboration among 725+ physicists
 from 104 institutes in 24 countries
- **50x** the data volume, **40x** rate of collisions relative to previous Belle experiment
- **PNNL led U.S.** (DOE) contribution to Belle II detector construction now complete
- Largest ever U.S. science investment in Japan
 - More Ph.D. physicists (50+) and more institutions (14) than any other country
- SuperKEKB: single beam circulation was done successfully (phase 1 in 2016)
- Cosmic-ray data taking is on-going
- Physics run will start in 2018

Belle II Computing Requirements

- Expected data rates from the Belle II experiment are high
 - Event rate of 6 kHz, corresponds to 11 PetaBytes per year starting in 2022
 - 100 PetaBytes raw data volume by 2024, total data volume ~190 PB
- Processed data samples will be distributed worldwide (Asia, North America, Europe)
- The Belle II Computing Steering Group resource estimations and feedback from Belle Program Advisory Committee and DOE reviews
- Resource requirements depend upon luminosity, event size, replicas, MC samples, etc.

Belle II Monte Carlo Production

Accomplishments:

- MC production are critical exercises to test the latest software, scalability, and provide physics samples for analysis.
- Monte Carlo #7 ran from Nov. 1st 2016 to Feb. 7th 2017
 - Approximately 27 billion events simulated
 - Reached 25k concurrent jobs (>200 kHEPSpec)
- Monte Carlo #8 started on Feb 16th and is done ... MC9 is ramping up
 - New Belle II computing record ~300kHEPSpec as measured by DIRAC pilot jobs

DIRAC (Distributed Infrastructure with Remote Agent Control) INTERWARE

Belle II Distributed Computing

U.S. Belle II Computing Requirements

- Resource requirements depend upon luminosity profile & event size (data volume),
 (re)processing, MC generation, and user analysis
- MC production accounts for nearly 50% of US Belle II computing resources
- Using of Leadership Class Facilities (LCFs) for MC production
- Investigating LCFs for scalable detector and physics studies
 - Rare physics channels such as B→D*taunu and B→K(*)tautau
 - iTOP "ring image" PID performance studies using Deep Learning
 - Detailed systematic studies when using Deep Learning models
 - Exhaustive hyper parameter scans

	CY17	CY18	CY19	CY20	CY21
CPU [kHEPSpecs]	20.11	27.56	58.90	69.71	82.97
Storage [PB]	0.31	0.81	5.04	6.50	9.28
Networking In/Out [Gbps]	0.30/0.30	0.49/0.36	1.06/0.26	1.56/0.31	1.89/0.83

	CY17	CY18	CY19	CY20	CY21
CPU @ PNNL [kHEPSpecs]	0.41	6.35	40.52	29.01	41.58
CPU @ LCF [kHEPSpecs]	19.70	21.21	18.38	40.70	41.39

PNNL Computing Facilities & Infrastructure

Description:

- PNNL leverage virtualization technologies using Kubernetes and OpenStack to provide a fault tolerance and flexible infrastructure
- HEP Computing is funded by a mix of DOE, PNNL HEP project money, and US-Japan funding

Major Components:

- Gridftp servers w/ bestman2 SRM
- OpenStack
- Enterprise Linux-compatible distros
- Docker
- DIRAC
- Condor
- Kubernetes
- Ceph object store
- Lustre shared filesystem

Services provided via private cloud:

- DIRAC server instances
- Compute nodes
- FTS3 to manage file transfers
- GUMS, VOMS servers
- CVMFS Stratum 0 & 1
- Squids
- Custom services on relational databases (e.g. Belle2db)

Belle II Computing on NERSC

- NERSC has two clusters with grid access:
 - Edison
 - Cori
- NERSC Allocation for 2017
 - Used to develop/test/validate the use of HPC for Belle II
- DIRAC GlobusComputingElement is being modified to provide extra options to enable the use Edison and Cori
- MC9 phase 3 just started and will allow us to monitor the availability of the NERSC resources

Project Title	US Belle II HPC Workflow	Funded by DOE Office of Science?	Y
Organization	Pacific Northwest National Laboratory (PNNL)	DOE Manager	Kevin Flood, Glen Crawford
DOE Office & Program	HEP - HEP Other Research	MPP Hours requested in ERCAP	10,000,000
Science Category	High Energy Physics	SRUs requested in ERCAP	1,000
Project class	DOE Base Funding		

Grid Components for NERSC

DIRAC

Workload Management Agent

SiteDirector

- Using modified GlobusComputingElement

Resource Definition

OSG.CORI.us

- Defined as GlobusComputingElement
- Mapped to PNNL StorageElement

OSG.EDISON.us

- Defined as GlobusComputingElement
- Mapped to PNNL StorageElement

LCFs Status and Plans

For NERSC:

- ✓ Request allocation; 10M core hours for CY17
- ✓ Setup for NERSC Cori and Edison setup are done
- ✓ Docker with software release 00-09-01 used for MC9 is done
- Develop MPI wrapper to submit "big" jobs and test on NERSC
- Create multiple DIRAC SiteDirector to submit different size jobs to NERSC

For ORLCF:

- ✓ Request allocation; 1M core hours for CY17
- Develop new DIRAC "SiteDirector"
- Develop backlog job optimization for scheduling

Belle II Distributed Data Management Computing Software

Belle II Distributed Data Management Overview

DDM Service Layer StorageElementStatus DataOperationRequest **DDM Database Layer** StorageElementStatusDB **DataOperationDB** ReplicaAndPopularityDB **DDM Agent Layer** DataOperationTaskFanout DataOperationTaskStatusUpdate **DataOperationExecuting** DataOperationRequestStatusUpdate StorageElementStatus **DataOperationCleaning** DataOperationReplica **DIRAC Base Layer**

Belle II Networking

• Description:

- Coordinate with the relevant National Research and Education Network (NREN)
 providers to organize and evaluate the WAN network status and requirements for the
 Belle II collaboration
- Coordinate the development effort to integrate the networking information into the Belle II distributed computing framework
- Establish a full design and specification of the data transfer and processing/reprocessing workflow between KEK and PNNL

Accomplishments:

- Full integration into LHCONE
- Network upgrade by NRENs and major sites: 2x10Gbps dedicated optical path from Seattle, 1x10Gbps dedicated optical path backup path through Boise (tested)
- Detailed network diagram for each major site (WAN, DTNs, storage backend)
- Several Network Data Challenges (NDC) before/after SINET upgrade:
 KEK to PNNL transfer rates based on NDC results is 16Gbps (max 20Gbps)
- NDC results demonstrates that Belle II networking requirements are satisfied

Latest Belle II Network Data Challenge Results

- A lot of moving part that requires frequent re-evaluation
 - Site reconfiguration: Network, Storage, Data Transfer Nodes, etc.
 - A stable perfSONAR mesh will simplify the network validation process
- New NDC is planned this fall

Source→ Destination↓	KEK (Gbps)	PNNL (Gbps)	DESY (Gbps)	KIT (Gbps)	CNAF (Gbps)	NAPOLI (Gbps)	SiGNET (Gbps)
KEK		6.2	11.0	5.0	9.2	15.0	3.0
PNNL	16.0		10.0	6.0	14.0	10.0	-
DESY	6.0	6.6		8.0	8.0	8.0	3.0
KIT	5.6	4.8	8.0		8.0	6.0	3.0
CNAF	18.0	14.0	10.0	6.0		8.0	3.0
NAPOLI	16.0	6.0	3.0	3.0	3.0		3.0
SIGNET	1.6	0.6	5.0	5.0	5.0	2.0	

Integrating Networking in the DDMS

- perfSONAR servers set up at Belle II sites for network monitoring
- Belle II MaDDash mesh is online and provides bandwidth and latency information
- Network information is being part of distributed data management (DDM) inside DIRAC
- Automate notification to sites with network problems and storage status update

DDMS Status and Plans

Status:

- ✓ File replication rates reached ~20k files per hour
- ✓ File deletion rates reached ~10k files per hour

Short Term Plans:

- Datablock-level replica and popularity catalog implementation
- Performance tuning with multithread agents
- Streamline BelleDIRAC access to FTS3 server
- Job data access lock
- Integrate networking information