
https://root.cern

https://root.cern


This Talk

▶ Introduction
● Meaning of ROOT I/O: disk access, (de)compression, (de)serialisation
● The “one file per thread” paradigm

▶ Parallel Reading
● Reading columns (branches) in parallel
● Decompressing data in parallel

▶ Parallel Writing
● Writing columns in parallel
● Writing data from multiple threads to the same file

▶ Bottomline and Outlook
2



ROOT I/O at a Glance

▶ Much more than reading/writing data from/to disk
● By the way, something that’s hard to parallelise itself

▶ Read / inflate / deserialize ↔ serialize / deflate / write out
● Granularity imposed onto files (e.g., clusters of entries)

▶ Interactions with other parts of ROOT
● Dynamic library loading
● Bulk reading of data (TTreeCache)
● Queries to the type system to determine how objects are represented

▶ Objects can be stored column-wise or row-wise
● Partial reads possible, data dependencies (e.g. pointers, array sizes)

▶ We cover mostly column-wise I/O in this talk
3



Several Ways to Parallelise

▶ High-level parallelisation of I/O of columnar data
● Process multiple columns in parallel
● Process multiple entries (events) in parallel

▶ Not mutually exclusive
● Nested parallelism is possible and recommended!

▶ ROOT I/O has multiple phases
● Each phase can be parallelised independently

▶ Runtime support for nested parallelism is crucial
● ROOT uses Intel® Threading Building Blocks (TBB) 

ROOT::EnableImplicitMT();
4



ROOT I/O:
Parallel Reading



Reading a Single File in Parallel

▶ ROOT can read the same file from multiple threads
● Manages non-trivial interactions with type system

● Automatic loading of dynamic libraries

▶ Implementation
● One instance of a TFile per worker thread

● Parallelise on entries: all independent

● Transparent to the user Available since  
ROOT 6.06

6



Reading Data Columns in Parallel

▶ First example of parallelisation of ROOT I/O
▶ Concept: read multiple columns (branches) in parallel

● Not a trivial “parallel for” loop due to data dependencies (e.g. references, array sizes)

▶ Benchmark: Read, decompress, deserialize two datasets
● CMS

◼ ~70 branches
◼ GenSim data

● ATLAS
◼ ~200 branches
◼ xAOD format

7

Available since  
ROOT 6.08



Decompressing Baskets in Parallel

1. ROOT optimises reading by retrieving data in big chunks
a. Mechanism referred to as TTreeCache
b. Useful also with remote files (good bandwith, bad latency)

2. Concept: increase parallelism during decompression
a. Start processing data in a TTreeCache
b. Asynchronously fetch a new big chunk filling the TTreeCache
c. Start inflating baskets of compressed data contained in it
d. Go to a. and repeat

3. Interleave decompression with data processing

8

Work in progress, targeting ROOT 6.12 release in November



Benchmark: 
Parallel Basked 
Decompression

▶ ROOT Event Data

▶ Fully split dataset

▶ Tested on an
Intel® Core i5 3330 
(6M cache, 3.00 GHz)

9



ROOT I/O:
Parallel Writing



Writing to Different Files in Parallel

▶ Analogous to the read case: write one file per thread

▶ Not transparent: data needs to be merged at the end
● Parallelisation of merging tool hadd

▶ This situation needed an improvement

11

Available since  
ROOT 6.06



Writing Data Columns in Parallel

▶ Writing counterpart of the parallel reading of columns
▶ Concept: flush contents of columns to disk in parallel

● Serialisation, interaction with trees and files

● Consequence: compression tackled in parallel

▶ As with parallel reading, not a trivial “parallel for”
● Several optimisations in place

● For example, sorting by size: long tasks start first → better balance

12

Available since  
ROOT 6.10



Benchmark: 
Writing out CMS 
RECO and AOD

Software Release: CMSSW 8_1_X 

▶ Experimental data from 2016

▶ Stream: “data processing lane”

▶ RECO: reconstruction format 
(“High I/O”)

▶ AOD: analysis format (“Low I/O”)

▶ IMT: Implicit Multi Threading

13

Available since  
ROOT 6.10

Cost of IO visible with
16 streams, 24 threads

no I/O



Writing to a File from Multiple Threads

▶ Goal: overcoming current “one file per thread” limitation

▶ In-process handling of writing mergeable objects from different threads
● Here we focus on TTrees for simplicity

▶ Created to support TDataFrame’s snapshot action
● However, can be used in other cases, e.g. experiments’ frameworks

● Discussing with CMS on how to improve/customize it

▶ Implementation: TBufferMerger class
● Factory of in-memory files that send their buffers into a merging queue

14

Available since  
ROOT 6.10

https://indico.cern.ch/event/567550/contributions/2629711/


TBufferMerger Class

15

Write()



TBufferMerger Programming Model

16

void Fill(TTree *t, int init, int count); // same as on the left

int WriteTree(size_t nEntries, size_t nWorkers)
{
   size_t nEntriesPerWorker = nEntries/nWorkers;
   
   ROOT::EnableThreadSafety();
   ROOT::Experimental::TBufferMerger merger("myfile.root");

   std::vector<std::thread> workers;

   auto workItem = [&](int i) {
         auto f = merger.GetFile();
         TTree t("mytree", "mytree");       
         Fill(t, i * nEntriesPerWorker, nEntriesPerWorker);
         f->Write(); // Send remaining content over the wire 
      };

   for (size_t i = 0; i < nWorkers; ++i)
      workers.emplace_back(workItem,i);

   for (auto&& worker : workers) worker.join(); 

   return 0;
}

void Fill(TTree &tree, int init, int count)
{
   int n = 0;

   tree->Branch("n", &n, "n/I");

   for (int i = 0; i < count; ++i) {
      n = init + i;
      tree.Fill();
   }
}

int WriteTree(size_t nEntries)
{

   TFile f("myfile.root");
   TTree t("mytree","mytree");

   Fill(&t, 0, nEntries);
   
   t.Write();

   return 0;
}

Sequential usage of TFile Parallel usage of TFile with TBufferMerger



Benchmark: 
TBufferMerger 

with Random Data
▶ Fill a tree with one branch 

with random numbers

▶ Synthetic benchmark that 
exacerbates the role of I/O 
by doing only lighweight 
computations

▶ Create ~1GB of data and 
write out to different media 
(SSD and DRAM)

▶ Quad core laptop
Intel® Core i7 4710HQ
(2.5GHz, 6M cache)

17

hyperthreading



Improving the 
Performance of 

ROOT I/O

18

▶ Use simple case with 
TBufferMerger to optimize 
ROOT I/O

▶ Same random number 
generation from before

▶ Reduce number of mutex 
locks acquired when 
checking the type system

▶ Reduced from a few 
hundred locks to a single 
lock per thread



Improving the 
Performance of 

ROOT I/O
▶ Use simple case with 

TBufferMerger to optimize 
ROOT I/O

▶ Same random number 
generation from before

▶ Reduce number of mutex 
locks acquired when 
checking the type system

▶ Reduced from a few 
hundred locks to a single 
lock per thread

19
Targeting  ROOT 6.12



Interlude: Good Old hadd

▶ Merging several files with identical / similar structure still needed

▶ Parallelism can be exploited in this case as well

● hadd is now parallelised too

$ hadd -j N
▶ Works as before, but better

▶ Uses multiprocessing for parallelism with TProcessExecutor

20

Available since  
ROOT 6.10



Bottomline and Outlook

▶ ROOT continues to parallelise its I/O subsystem
● Focus not only on experiments’ data processing, but also on analysis

▶ Reading/Writing branches in parallel
● Factor of 2x on CMS RECO data

▶ Parallel writing to single output file via TBufferMerger
● Leveraged by TDataFrame already
● Good performance

Challenges posed to us:

▶ Better exploit data parallelism (e.g. use vectorised zlib)
▶ Optimise parallel merging of trees with TBufferMerger

21

 
 

 







The Cache Federation of Classes

24



One File per Thread Paradigm

25

▶ ROOT supports since 6.08 reading and writing of one file per thread
● Global states eliminated or made thread local

▶ Good solution but has shortcomings
● Cannot write/read N files simultaneously with N arbitrarily large

● Merging several files after they have been written has a cost!

▶ Does not fit “extreme” architectures, e.g. KNL
● Need to find more opportunities for expressing parallelism

● E.g. parallelism nested in all steps of ROOT I/O 

▶ Delicate to match with task-based parallelism
● Thread-local vs “task specific”


