
Δ𝑧

Υ(𝟦𝖲)
𝖾− 𝖾+

𝖡𝟢
rec

𝖡𝟢
tag

𝖩/𝜓

𝜇+
𝜇−

ℓ− 𝖪−

𝜋−

𝜋+
𝖪𝟢
𝖲

Boost

The Belle II Experiment
An electron positron collider with asymmetric en-

ergies located in Japan to test the standard model

with high precision.

▶ start in 2018, collect 50 ab−1 until 2024

▶ record 4 × 1011 events, 60PB of data

▶ generate simulated data with at least the

same statistics

Software Framework
Software framework written from scratch using

experience from Belle and other HEP experi-

ments.

▶ core framework implemented in C++14 and

including the boost libraries

▶ use ROOT 6 framework for serialization of

event data, Geant4 for simulation

▶ Python 3 interface for configuration and high

level program steering

▶ different algorithms (called modules) are

executed sequentially for each event

Conditions Data at Belle II
Conditions data are configuration/calibration

items which depend on the conditions during

data taking.

▶ database contains information on run

granularity

▶ finer granularity to be handled on client side

▶ should be transparent to the user

▶ needs to work on closed DAQ network

without outside connection

See Wood et al, “Implementing the Belle II

Conditions Database Using Industry-Standard

Tools” for details on the server

See Bilka et al, “Alignment and Calibration

Framework for the Belle II Detector” for details

on calibration procedure.

Design Decisions
▶ use ROOT objects for conditions data

▶ identify by name

▶ default name is the class name

Read Access of Conditions Objects
Two template classes which always provide

pointer to correct payload

▶ DBObjPtr for single objects
▶ DBArray for arrays of objects
▶ shallow class, just points to common area

class MyConditionsClass: public TObject {
public:

MyConditionsClass(const std::string &string):
TObject(), m_string(string) {}

const std::string& getString() const {
return m_string;

}
private:

std::string m_string;
};

DBObjPtr <MyConditionsClass > myObj;
if(!conditionsObj){

B2ERROR("No␣Conditions␣data␣Available");
}else{

B2INFO("Conditions:␣" << myObj ->getString ());
}
DBArray <MyConditionsClass > myList("SpecialName");
B2INFO("Found␣" << myList.getEntries() "␣objects");

Hides updates from the user

▶ user can check if payload changed

▶ user can register callback on change

Creation of Payloads
similar classes to create payloads

▶ DBImportObjPtr and DBImportArray
▶ allow to create payloads with simple

interface

IntraRun Dependency
Some payloads might change more frequent

than per run, for example Beamspot positions

▶ handled completely on client side

▶ different types of dependencies: event

number, time stamp, …

▶ usage completely transparent

DBImportObjPtr <MyConditionsClass > myObjImport;
myObjImport.construct("initial␣value");
myObjImport.addEventDependency(10, "from␣event␣10");
myObjImport.addEventDependency(50, "from␣event␣50");
myObjImport.import(iov);

Different Storage Backends
Software offers different storage backends

▶ using REST api to obtain payloads from

central database

▶ using local folder with payloads and text file

defining validity.

This simplifies development and debugging:

▶ users can create and test their payloads

locally without uploading

▶ users can continue to develop without

internet connection

▶ snapshots of the database can be

downloaded for isolated environments

Configuration and Usage
Usage of the database can be easily configured

from the steering file

▶ several backends can be searched in order

▶ access to central database can be completely

disabled

import basf2
clear defaults
basf2.reset_database()
use more then one source for payloads
basf2.use_database_chain()
local fallback database looking in folder "db/"
basf2.use_local_database("db/payloads.txt", "db/")
use central database as primary source and obtain
payloads from global tag "mytag"
basf2.use_central_database("mytag")

Distribution of Payloads
Payload files are downloaded from the server

using http and stored in a local directory for

caching

▶ if all payloads are found locally only

metadata is obtained from server

▶ md5sum of file is checked before opening

▶ alternative distribution paths possible (cvmfs,

xrootd, MICA, git-packfiles)

Command Line Interface
Rest api very well suited for standalone

command line interface

very easy to have independent

implementations

▶ git like cli for management

▶ written in Python using requests

▶ manage/modify/show content of database

▶ show differences between global tags

▶ batch upload/download of payloads

▶ dump payload content in readable form

