LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

LVU

18th International Workshop on Advanced Computing and

Analysis Techniques in Physics Research

The Belle Il Experiment

BELLE || CONDITIONS
DATABASE INTERFACE

Martin Ritter’, Thomas Kuhr?, Christian Pulvermacher? for the Belle || Collaboration

TLudwig-Maximilians-University, Munich 2High Energy Accelerator Research Organization, Japan

Read Access of Conditions Objects

An electron positron collider with asymmetric en- Two template classes which always provide

ergies located in Japan to test the standard model
with high precision.

» start in 2018, collect 50ab~" until 2024
» record 4 x 10" events, 60 PB of data

» generate simulated data with at least the
same statistics

Software Framework

Software framework written from scratch using
experience from Belle and other HEP experi-
ments.

» core framework implemented in C++14 and
Including the boost libraries

» use ROOT 6 framework for serialization of
event data, Geant4 for simulation

» Python 3 interface for configuration and high
level program steering

» different algorithms (called modules) are
executed sequentially for each event

software mo\dules path
/,%F >
data flow
O J >
7\ . X kil
conditions

Conditions Data at Belle Ii

Conditions data are configuration/calibration
items which depend on the conditions during
data taking.

» database contains information on run
granularity

» finer granularity to be handled on client side
» should be transparent to the user

» needs to work on closed DAQ network
without outside connection

% See Wood et al, “Implementing the Belle I
Conditions Database Using Industry-Standard
Tools” for details on the server

% See Bilka et al, “Alignment and Calibration
Framework for the Belle || Detector” for details
on calibration procedure.

Design Decisions
» use ROOT objects for conditions data
» Identify by name
» default name iIs the class name

Excellence Cluster
|Universe

pointer to correct payload
» DBObjPtr for single objects
» DBArray for arrays of objects
» shallow class, just points to common area

class MyConditionsClass: public TObject {
public:
MyConditionsClass (const std::string &string):
TObject (), m_string(string) {}
const std::string& getString() const {
return m_string;
}
private:
std::string m_string,;

+;

DBObjPtr<MyConditionsClass> my(Obj;
if (! conditionsObj){
B2ERROR ("No ,Conditions data Available");
telsed
B2INFO("Conditions: " << myObj->getString());
}
DBArray<MyConditionsClass> myList("SpeciallName");
B2INFO("Found_," << myList.getEntries() "_objects");

Hides updates from the user
» user can check If payload changed
» user can register callback on change

DBEntry
references

manages

DBObjPtr<T> |—requests—> DBStore
<—notifies
|
requests
updates
Database Service |« |
¢ calls ¢

Q

LocalDatabase CentralDatabase
Local

Index ’ Central DB
File - Server

Local Dir

Creation of Payloads
similar classes to create payloads

» DBImportObjPtr and DBImportArray

» allow to create payloads with simple
Interface

IntraRun Dependency
Some payloads might change more frequent
than per run, for example Beamspot positions

» handled completely on client side

» different types of dependencies: event
number, time stamp, ...

» usage completely transparent

DBImportObjPtr<MyConditionsClass> myObjImport;
myObjImport.construct("initial value");
myObjImport.addEventDependency (10,
myObjImport.addEventDependency (50,

myObjImport.import (iov);

% ‘ Bundesministerium

ftr Bildung
und Forschung

"from ,event 10");
"from ,event 50");

Different Storage Backends
Software offers different storage backends

» using REST api to obtain payloads from
central database

» using local folder with payloads and text file
defining validity.

This simplifies development and debugging:

» users can create and test their payloads
locally without uploading

» users can continue to develop without
Internet connection

» snapshots of the database can be
downloaded for isolated environments

Configuration and Usage
Usage of the database can be easily configured
from the steering file

» several backends can be searched in order

» access to central database can be completely
disabled

import basf?2

clear defaults

basf2.reset _database ()

use more them one source for payloads

basf2.use _database chain ()

local fallback database looking in folder "db/"
basf2.use local database("db/payloads.txt", "db/")
use central database as primary source and obtain

payloads from global tag "mytag"”

basf2.use central database('"mytag")

Distribution of Payloads

Payload files are downloaded from the server
using http and stored in a local directory for
caching

» If all payloads are found locally only
metadata Is obtained from server
» md5sum of file Is checked before opening

» alternative distribution paths possible (cvmfs,
xrootd, MICA, git-packfiles)

Command Line Interface
Rest api very well suited for standalone
command line interface

% very easy to have independent
Implementations

» git like cli for management

» written in Python using requests

» manage/modify/show content of database

» show differences between global tags

» batch upload/download of payloads

» dump payload content in readable form

