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Introduction

´ Detailed simulation has heavy computation requirements

´ A large fraction of current computing resources are devoted to 
Monte Carlo production

´ Fast simulation is heavily used by experiments

´ Mostly when accuracy requirements are more “relaxed” 
(searches, upgrade studies,…)

´ A necessity in future HL-LHC runs

´ Currently available solutions are detector dependent
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GeantV fast simulation framework

´ Introduce fastsim in GeantV framework
´Provide configurable interface (probably G4 

userActions style)
´Composite solutions (mix/match fast and full simulation 

within the same event)
´A choice of basic tools: parametrization, libraries, 

machine learning tool

Fast, modular and fully configurable
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Integrating fast simulation in GeantV5



Machine Learning for fast sim6
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Untrained Model

http://www.physics.umd.edu/rgroups/hep/LegoCMS/

Detector

Physics (e+, e-,γ,π..)
Kinematics…  

GeantV
Training Trained 

Model

´ Convert saved NN for application in C++ environment through 
libraries  as lwtnn



8 Untrained Model Training Trained 
Model

http://www.physics.umd.edu/rgroups/hep/LegoCMS/

Detector

Physics (e+, e-,γ,π..)
Kinematics…  

GeantV

´ “Detector” info to drive the design/choice of model
´ A tool capable of optimizing the model configuration and train
´ Embed in GeantV



Design the ML model(s)

´ Initially focus on time consuming detectors
´ Reproduce particle showers in electromagnetic and hadronic 

calorimeters
´ Train networks on full simulation

´ Eventually test possibility of training on real data
´ Test different techniques

´ Multi Objective regression, Feature extraction
´ Test different models

´ Generative adversarial networks, Recurrent networks 
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Generative adversarial networks

´ Generator learns to generate 
data starting from random 
noise

´ Discriminator learns how to 
distinguish real data from 
generated data

The counterfeiter/police case
´ Counterfeiter shows police the fake money
´ Police says it is fake and gives feedback 
´ Counterfeiter makes new money based on feedback
´ Iterate until police is fooled
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arXiv:1406.2661v1 

Simultaneously train two networks that compete and cooperate with each other: 



Many GAN flavors

´ Original GAN based on MLP in 2014
´ Deep Convolutional GAN in 2015
´ Conditional GAN 

´ Learn a parameterized generator 
pmodel(x|θ); 

´ Useful to obtain a single generator 
object for all θ configurations

´ Auxiliary Classifer GAN
´ D can assign a class to the image

´ Multi-adversarial
´ G is trained on feedback 

aggregated by multiple D
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Durugkar et al., ICLR 2017



CLIC calorimeter

´ CLIC is a CERN project for a linear accelerator of 
electrons and positrons to TeV energies

´ Associated calorimeter detector design(*)

´ An array of absorber material and silicon sensors

´ ECAL (1.5 m inner radius, 5 mm×5 mm 
segmentation): 25 tungsten absorber layers +  silicon 
sensors

´HCAL (3.0 cm×3.0 cm segmentation): 60 steel 
absorber layers + polystyrene scintillators 
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(*) http://cds.cern.ch/record/2254048#

Data released within CERN OpenData initiative 



CLIC calorimeter data

Geant4  single-particle benchmark datasets 
(e+, e-, γ, π) (DD4hep/DDG4/ddsim)

´ Uniform energy distribution

´ Fixed energy points (10,50,100,200 GeV)

´ Simplified: no clustering/cluster id algorithms 
applied
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Ispy visualisation

Geant4 shower 

25 2525

Data is essentially a 
3D image 

Pierini, DS@HEP



3d GAN for calorimeter images

´ Conditional GAN (particle type)

´ Based on convolution/deconvolutions

´ 3D (de)convolutions to describe full 
shower development

´ Implemented tips&tricks found in literature

´ Some helpful (no batch normalisation
in the last step, LeakyRelu, no hidden 
dense layers, no pooling layers)

´ Some not (Adam optimiser)

´ Batch training

´ Loss is combined cross entropy 
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First 3d shower  images

´ Train networks on 150k electrons/photons

´ Keep energy fixed at 100 GeV

´ Qualitative analysis show no collapse 
problem

´ Longitudinal shower shape slightly off 
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100 GeV electrons

Shower longitudinal section

Geant4
GAN generated



GAN generated showers
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Single cell response

Y

Preliminary
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Energy as auxiliary classifier

´ Add primary energy regression task to 
discriminator 

´ Auxiliary loss weight is scaled down wrt
shower’s 

´ Train on large continuous spectrum: 
[0,500] GeV 

´ Single particle type: electrons
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Training the generator and the discriminator using primary particle energy 



Generated showers: longitudinal profile

´ Shower longitudinal profile shifts towards G4

´ Agreement improves

19

a
.u

.

0 5 10 15 20 250

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ez distribution
hz

Entries  1137352
Mean    13.65
Std Dev     4.599

hz_g4
Entries  1576880
Mean     13.8
Std Dev     4.654

Ez distribution

Geant4
GAN generated

a
.u

.

ZZ



0 5 10 15 20 25
4−10

3−10

2−10

1−10

1

Ey distribution

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

Ey distributionEy distribution

Generated showers: transverse profile20

a.
u.

Y

Geant4
GAN generateda.

u.

Geant4
GAN generated a.

u.

X

Y
X

Geant4
GAN generated

X

X

a
.u

.
a

.u
.

a
.u

.
a

.u
.



Energy regression

´ Consistency check
´ Generate single 

energy samples
´ Compare to 

discriminator 
reconstructed 
energy

´ Agreement is 
good.
´ Performance 

degrades at the 
edges
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100 GeV

150 GeV

200 GeV

300 GeV

50 GeV:
~20% off

500 GeV:
~12% off



Next steps

´ Ongoing optimization

´ Test interpolation / extrapolation

´ Effect of training sample statistics

´ Comparison to other fast simulation approaches 

´ Generalize to multi-class approach (or multi-discriminator): 
primary particle entry point, angle, etc.. 

´ Start optimization via hyper-parameter scan
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Have a first example ready by the end of the year



Timing

´ Generating a shower from trained model is extremely fast!

´ Training takes about 1 day on the GTX1080

´ Training time cannot become a bottleneck

´ Depending on the final use case retraining the networks might 
be necessary

´Embedded algorithms to perform hyper-parameters tuning 
and meta-optimization

´Scan large hyper-parameter space 
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Keras + Tensorflow

Implemetation
Time/Shower

(msec)
My laptop (2.6 GHz Intel i7) 66

NVIDIA GeForce GTX 1080 0.04

Collaboration with Intel and CINECA (Italy) to test scaling on Marconi 
Intel Xeon Phi cluster 



Summary

´ A configurable framework for fast simulation
´Easily embed user code
´A reasonable library of algorithms

´ A ML based tool
´Evaluation and optimization of several models

´ Integration in GEANTV:  inference step first, then training tool
´ Prototype interface and ML proof of concept in GEANTV alpha

´Generalization and meta-optimization later on
´It could be back-ported to Geant4
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Thank you25


