
Software Emulators for the
YARR DAQ System

ACAT - Seattle - August 21-25, 2017

Introduction
The Yet Another Rapid Readout (YARR) software aims to provide a simple, modular, and high performance data acquisition

(DAQ) system for next generation pixel readout chips to be deployed in the High Luminosity LHC (HL-LHC) ATLAS Inner
Tracker Detector (ITk). YARR can interface with current generation pixel readout chips, such as FE-I4, and is being upgraded
to interface with the RD53A demonstrator chip for ITk. It can also interface with software emulators of readout chips, greatly
simplifying the DAQ development and allowing development of DAQ for future readout chips, such as RD53A. These emulators
also allow the implementation of continuous integration for YARR, improving the maintainability and quality of the software.

YARR In a Nutshell
I YARR software interfaces with readout chips via a PCIe FPGA board
I the FPGA firmware is simple and multiplexes links
I core design philosophy is to delegate all data processing to the host
I a recent major addition to YARR is the ability to interface with emulators

Detector Module
(Readout Chip)

FPGA Host Computer
(YARR software)

- pixel sensor array
- current gen:
 - 26880 pixels, 160 Mb/s
- next gen:
 - 160000 pixels, 5 Gb/s

- simple firmware
- link aggregation
- no data processing

- modern multi-core CPU
- C++ based
- does all raw data processing

can be emulated in software

Emulator Design
I emulator receives commands from YARR and decodes them
I non-trigger commands configure Global/Pixel Registers (GR, PR)
I trigger commands cause the emulator to loop over a virtual pixel array
I emulator models pixel hits and sends hit data back to YARR
I 2 emulators currently: FE-I4 (done) and RD53A (in development)

senderreceiver command
shared mem

command decoderglobal reg

pixel reg

trig/inj

pixel
array

receiversender hit data
shared mem

YARR softwareReadout Chip
Software Emulator

hit data

use YARR classes

FE-I4 Register Configuration
I Global Registers contain chip-level settings, e.g. global threshold voltage
I Pixel Registers contain pixel-level settings, e.g. local threshold voltage
I to configure registers, must send specific commands to the chip/emulator

Command

WrRegister

WrFrontEnd

GlobalPulseTrigger

based on GR, do (in dc loop):
- Shift SR
- write PR to SR
- write SR to PR

value

bitstream

write value to
GR at address

write bitstream
to SR (in dc loop)

decode chip id,
address from
Command word

read from YARR

 FE-I4
Command Decoder
 and Configuration

read from YARR

FE-I4 Hit Modelling
I hits are registered if signal is above a threshold voltage
I the threshold voltage is determined by global and local threshold values
I emulator models threshold behavior/noise with per-pixel Gaussian smearing
I the Time over Threshold (ToT) is the main hit information calculated

DAC Global
Threshold

Hit Out
Amp

Bias

Threshold
Register

Local Threshold

V

t

ToT
V=0

V= Global Threshold Voltage

V= Global + Local Threshold Voltage

signal

FE-I4 Scans and Calibrations
I FE-I4 emulator behaves like real FE-I4 chips
I can run all scans and calibrations, e.g. threshold calibration shown below

0

100

200

300

400

500

600

700

800

1500 2000 2500 3000 3500

N
um

be
r o

f P
ix

el
s

Threshold [e]

ThresholdDist

before threshold tune

0

500

1000

1500

2000

2500

3000

3500

4000

1500 2000 2500 3000 3500

N
um

be
r o

f P
ix

el
s

Threshold [e]

ThresholdDist

after threshold tune

RD53A Software Emulator
I RD53A software emulator under development
I emulator development in parallel with YARR RD53A DAQ development
I new command decoder, chip configuration, and hit modelling

Command

data size
chip id
broadcast bit
address

Trigger

Write_Register

read from YARR

 RD53A
Command Decoder
 and Configuration

read from YARR

16-bit data

96-bit data

based on GR, bb:
write data to PR

write data to GR

read from YARR

I RD53A contains 3 types of analog
front end, requiring 3 different hit
models to be implemented

I hit modelling for 1 of the analog
front end types shown to the right

I here, ToT is calculated by
comparing an offset signal with an
inverted and offset signal

V

t
V=0

VDiff=V1-V2ToT

V2= Global Thr. V2 + Local Thr. V2

V1= Global Thr. V1 + Local Thr. V1

signal

signal + V2

inverted signal + V1

Continuous Integration
I software emulators allow for easy continuous integration implementation
I after every commit, a server called a “Runner” checks out the YARR repo
I Runner compiles YARR, runs a digital scan with an emulator, checks results
I if the Runner fails, user is notified that their code broke something
I this system helps maintain quality, bug-free code

make
changes

commit/
push

checkout
and compile

notify
user

digital scan
with emulator

notify
user

analyze
results

notify
user

successful
commit

runs on a gitlab "Runner"

continuous integration workflow if error
occurs

References and Further Info
I refs: cern.ch/go/D8gF cern.ch/go/D6TW cern.ch/go/F9BL
I for YARR software on GitLab, scan the QR code to the right:
I my email: alokin@uw.edu

Nikola Whallon, University of Washington
Timon Heim[1], Hideyuki Oide[2], Karolos Potamianos[3],
Maurice Garcia-Sciveres[1], Shih-Chieh Hsu[4]

Supported by
 DOE-SCGSR

[1]LBNL, [2]INFN Genoa, [3]DESY, [4]University of Washington R

