
ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 1 Thomas Janson

ACAT 2017
University of Washington, Seattle

Massive Parallel QCD Computing

on FPGA Accelerator

with Data-Flow Programming

Thomas Janson and Udo Kebschull
Infrastructure and Computer Systems in Data Processing (IRI)
Goethe University Frankfurt
Germany

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 2 Thomas Janson

Introduction and Overview

• Motivation: fully enabled parallelism and next neighbor
search by using data-flow programming

• Compute framework

• Concept of data-flow programming

• Wilson Dirac operator most intense algorithm

• Algorithm and neighbor indexing

• Dslash Operator as Dataflow Graph

• Implementation

• Results

• Conclusion

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 3 Thomas Janson

Framework – Maxeler System Architecture

Picture from: Maxeler Technologies,
“Programming MPC Systems”, White Paper,
June 2013

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 4 Thomas Janson

Concept of Data-Flow Programming

• Algorithm as data-flow graph
• Small set of node types
• All nodes are fully pipelined
• Arc can hold more than one data item
• All arithmetic operations are spatially

distributed
• Control flow and data flow

decoupled
• Offset operator picks up data items

within the data stream

• Stream length known at compile time

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 5 Thomas Janson

Wilson Dirac Operator

• We compute: Ψ′ = 1 − 𝜅𝐻 Ψ

• H collects all neighbor terms

H =

μ=1

4

1 − γμ Uμ n ψ n + μ + (1 +γμ)Uμ
T n − μ ψ(n − μ)

• Site Index: 𝑛 = (𝑥, 𝑦, 𝑧, 𝑡)

• Array Index: 𝑛 = 𝑥 + 𝑦 ∗ 𝑁𝑠 + 𝑧 ∗ 𝑁𝑠
2 + 𝑡 ∗ 𝑁𝑠

3

• AoS data layout
• for each site index n: (ψ,𝑈1, 𝑈2, 𝑈3, 𝑈4)

• Index arithmetic to collect next neighbor

• 𝑛𝑢𝑝 = 𝑥 + 𝑦 + 1 %𝑁𝑠 ∗ 𝑁𝑠 + 𝑧 ∗ 𝑁𝑠
2 + 𝑡 ∗ 𝑁𝑠

3

• 𝑛𝑑𝑜𝑤𝑛 = 𝑥 + 𝑁𝑠 + 𝑦 − 1 %𝑁𝑠 ∗ 𝑁𝑠 + 𝑧 ∗ 𝑁𝑠
2 + 𝑡 ∗ 𝑁𝑠

3

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 6 Thomas Janson

Algorithm

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 7 Thomas Janson

Data-Flow Graph in MaxJ

• The outer for loops (x,y,z,t) are unrolled (data stream)

• The inner loop describes the four graphs for each direction

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 8 Thomas Janson

Dslash Operator as Data-Flow Graph

• Loop transformation leads to:

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 9 Thomas Janson

Data Layout and Number Representation

• We store the lattice in LMem

• AoS (array of structure) data layout

• We use 32 bit fixed-point number representation
• 23 fractional bits, 7 bit mantissa (signed integer)

• Advantage: much lower resource usage

• Entries for the link variable smaller than one
(unitary 3x3 matrices, determinant 1)

• In case of spinor field, an estimation is done against a given data
set (shows relative error of 10^-4% against exact values
computed with Mathematica)

• Same test against single precision floating point shows same
relative error

• We use this design with the option to test against more data sets

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 10 Thomas Janson

Kernel Throughput

• Kernel throughput depends on kernel clock rate
(133 MHz max)

• We use 32 bit fixed-point number representation

• Input stream with 47 GByte/s

• Output stream with 12 GByte/s

• Theoretical equivalent peak performance 176 GFLOP/s

• our kernel computes 1320 FLOPs each clock cycle

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 11 Thomas Janson

Memory Interface

• We stream from LMem, and write
the result back to LMem

• 6 x DDR3 memory , 384 bit interface

• Burst rate 8 , 3072 bit intern

• 384 Byte in one kernel tick

• Memory Interface 1066 Mbps
(hard to get timing closure)

• Memory Interface configured with
800 Mbps and kernel with 100 MHz

• The design is considered to be
memory bound

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 12 Thomas Janson

Implementation Results

• Resource usage:
• Lattice size restricted

• 163 × 4

• Kernel peak performance
• with 100 MHz – 132 GFLOP/s

• Peak memory bandwidth
• 35.76 GByte/s

• Measured with maxtop utility from the Maxeler framework
• FPGA usage 49.6 %
• Memory bus utilization 62.5 %
• Power usage 35.5 W
• Memory bandwidth 23.64 GByte/s
• Performance 66 GFLOP/s

• Comparison against
CL2QCD implementation

ACAR 2017 - Seattle

IRI – GOETHE UNIVERSITY FRANKFURT 13 Thomas Janson

Conclusion

• Dslash operator can be implemented in a highly parallel
and efficient way on an FPGA using the data-flow approach

• Processes all arithmetic operations in parallel with 1320
FLOPs per clock cycle

• Measured memory bandwidth of 23.64 GByte/s

• Measured performance 66 GFLOP/s

• We reach a very good performance bandwidth ratio

