## Numerical techniques for 2- and 3-loop integrals

#### A. Freitas University of Pittsburgh

I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, arXiv:1607.08375, arXiv:17mm.nnnn A. Freitas, arXiv:1609.09159, arXiv:1702.02996

## 1. ${\cal O}(lpha^2)$ bosonic corrections Z f ar f vertices

### 2. Techniques for general 3-loop vacuum integrals

# $\mathcal{O}(\alpha^2)$ bosonic corrections $Zf\bar{f}$ vertices



One-loop

Sirlin, Marciano '80; Akhundov, Bardin, Riemann '86

- O(αα<sub>S</sub>) QCD Djouadi, Verzegnassi '87; Kniehl '90; Djouadi, Gambino '93 Fleischer, Tarasov, Jegerlehner, Raczka '92; Buchalla '93; Degrassi '93 Czarnecki, Kühn '96; Harlander, Seidensticker, Steinhauser '97
- "Fermionic" NNLO corrections ( $g_{Vf}$ ,  $g_{Af}$ ) Harlander, Seidensticker, Steinhauser '98 Freitas '13,14
- Partial 3/4-loop corrections to  $\rho/T$ -parameter  $\mathcal{O}(\alpha_{t}\alpha_{s}^{2}), \mathcal{O}(\alpha_{t}^{2}\alpha_{s}), \mathcal{O}(\alpha_{t}\alpha_{s}^{3})$

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

$$(\alpha_{\rm t} \equiv \frac{y_{\rm t}^2}{4\pi})$$

# Calculational approach for bosonic $\mathcal{O}(\alpha^2)$ corrections 2/16

- Two-loop diagrams without closed fermion loops
- On-shell renormalization
- Self-energies (incl. from renormlization) and vertices with sub-loop bubbles using dispersion relation technique
   S. Bauberger et al. '95 Awramik, Czakon, Freitas '06
- Non-trivial vertex diagrams:
  - Sector decomposition (FIESTA 3 / SecDec 3) Smirnov '14; Borowka et al. '15
  - Mellin-Barnes representations (MB / AMBRE 3 / MBnumerics) Czakon '06 Dubovyk, Gluza, Riemann '15; Usovitsch '17
  - No tensor reduction (besides trivial cancellations)
    - → About 700 different two-loop vertex integrals



## Mellin-Barnes representations



## Mellin-Barnes representations



• Consistent choice of all  $C_i$  often requires  $\varepsilon \neq 0$ ( $Z = n + \epsilon$ )



**Do remaining**  $C_i$  integrations numerically



$$\begin{array}{c} p \\ \overrightarrow{m_{1}} \\ \overrightarrow{m_{2}} \\ m_{3} \end{array} = \frac{-1}{(2\pi i)^{3}} \int dz_{1} dz_{2} dz_{3} \ (m_{1}^{2})^{-\varepsilon - z_{1} - z_{2}} (m_{2}^{2})^{z_{2}} (m_{3}^{2})^{1 - \varepsilon + z_{1} - z_{3}} (-p^{2})^{z_{3}} \\ \times \Gamma(-z_{2}) \Gamma(-z_{3}) \Gamma(1 + z_{1} + z_{2}) \Gamma(z_{3} - z_{1}) \\ \times \frac{\Gamma(1 - \varepsilon - z_{2}) \Gamma(\varepsilon + z_{1} + z_{2}) \Gamma(\varepsilon - 1 - z_{1} + z_{3})}{\Gamma(2 - \varepsilon + z_{3})} \end{array}$$



4/16

$$\begin{array}{c} p \\ \overrightarrow{m_{1}} \\ \overrightarrow{m_{2}} \\ m_{3} \end{array} = \frac{-1}{(2\pi i)^{3}} \int dz_{1} dz_{2} dz_{3} \ (m_{1}^{2})^{-\varepsilon - z_{1} - z_{2}} (m_{2}^{2})^{z_{2}} (m_{3}^{2})^{1 - \varepsilon + z_{1} - z_{3}} (-p^{2})^{z_{3}} \\ \times \Gamma(-z_{2}) \Gamma(-z_{3}) \Gamma(1 + z_{1} + z_{2}) \Gamma(z_{3} - z_{1}) \\ \times \frac{\Gamma(1 - \varepsilon - z_{2}) \Gamma(\varepsilon + z_{1} + z_{2}) \Gamma(\varepsilon - 1 - z_{1} + z_{3})}{\Gamma(2 - \varepsilon + z_{3})} \end{array}$$

$$z_{3} = c_{3} + iy_{3}, \quad y_{i} \in (-\infty, \infty)$$

$$(-p^{2})^{z_{3}} = \underbrace{(p^{2})^{c_{3} + iy_{3}} e^{-i\pi c_{3}} e^{\pi y_{3}}}_{\text{oscillating}} e^{i\pi y_{3}} e^{i\pi y_{3}}$$

Counter rotations not always successful:

$$\frac{1}{(2\pi i)^2} \int dz_1 dz_2 \ 2(m^2)^{-2} \left(-\frac{p^2}{m^2}\right)^{-z_1-z_2} \\ \times \frac{\Gamma(-z_2)\Gamma^3(1+z_2)\Gamma(-z_1-z_2)\Gamma(1+z_1+z_2)\Gamma(-1-z_1-2z_2)}{\Gamma(1-z_1)}$$

For  $p^2 = m^2$  contour rotation has no effect

Shift countour: 
$$z_1 = c_1 + iy_1$$
,  $z_2 = c_2 + n + iy_2$ 

• Worst asymptotic behaviour of integrand for  $y_1 \rightarrow -\infty$ ,  $y_2 = 0$ :  $\sim y_1^{-2-2(c_2+n)}$  (for n = 0 and  $c_2 = -0.7$ :  $\sim y_1^{-0.6}$ )

Pick up (finite number of) pole residues from contour shift

## Mellin-Barnes representations

- Shifts improve asymptotic behaviour and size of numerical integral
- Automatic algorithms for finding suitable shifts in development (MBnumerics)
   Usovitsch '17



## Examples

$$m_1 = m_t, m_5 = m_6 = M_W, m_2 = m_3 = m_4 = 0$$



SecDec: (24 hours)

$$I_{\text{SD}} = 1.541 + 0.2487 \, i + \frac{1}{\epsilon} (0.123615 - 1.06103 \, i) \\ + \frac{1}{\epsilon^2} (-0.3377373796 - 5 \times 10^{-10} \, i)$$

### MBnumerics: (43 min.)

$$I_{\text{MB}} = 1.541402128186602 + 0.248804198197504 i$$
  
+  $\frac{1}{\epsilon}(0.12361459942846659 - 1.0610332704387688 i)$   
+  $\frac{1}{\epsilon^2}(-0.33773737955057970 + 3.6 \times 10^{-17} i)$ 

## Examples

 $m_1 = M_Z$ , rest zero

SecDec: error  $\gg 1$ 

```
MBnumerics: (finite part)
```

```
-0.7785996083 - 4.12351260 \ i
```

Analytical:

Fleischer, Kotikov, Veretin '98

```
-0.7785996090 - 4.12351259 \ i
```



## Comparison of techniques

### Sector decomposition:

Fully automated for (almost) any multi-loop diagram

- $\rightarrow$  public tools available
- Numerical stability and precision difficult in some cases

#### Mellin-Barnes:

- Contour shift method applied successfully for 2-loop vertices
  - $\rightarrow$  Good numerical precision
- Extension to more loops/legs possible, but more work needed
- Partial automatization possible, but full automatization difficult (nested interdependent shifts for multi-dimensional integrals)
- Package MBnumerics under development

Usovitsch '17

## **General 3-loop vacuum integrals**

Relevant for low-energy precision observables ( $p^2 \ll M_Z$ )

Coefficients of low-momentum expansions

Building block for more general 3-loop calculations

# Master integrals: $M(\nu_1, \nu_2, \nu_3, \nu_4, \nu_5, \nu_6; m_1^2, m_2^2, m_3^2, m_4^2, m_5^2, m_6^2)$ $= i \frac{e^{3\gamma_{\mathsf{E}}\epsilon}}{\pi^{3D/2}} \int d^D q_1 \, d^D q_2 \, d^D q_3 \, [q_1^2 - m_1^2]^{-\nu_1} [(q_1 - q_2)^2 - m_2^2]^{-\nu_2}$ $\times [(q_2 - q_3)^2 - m_3^2]^{-\nu_3} [q_3^2 - m_4^2]^{-\nu_4} [q_2^2 - m_5^2]^{-\nu_5} [(q_1 - q_3)^2 - m_6^2]^{-\nu_6}$ 3 2 2 $U_5$ $U_6$ UΔ

 $= M(2, 1, 1, 1, 0, 0) \qquad = M(1, 1, 1, 1, 0) \qquad = M(1, 1, 1, 1, 1)$ 

 $\underline{U_4}$ 

$$\underbrace{\stackrel{p}{\longrightarrow}}_{1=1}^{2} \underbrace{\stackrel{4}{\longrightarrow}}_{1=1=3} = B_{0,m_1}(p^2, m_1^2, m_2^2) B_0(p^2, m_3^2, m_4^2) \\ = \int_0^{\infty} ds \frac{\Delta I_{db}(s)}{s - p^2 - i\varepsilon}$$
  
$$\Delta I_{db}(s, m_1^2, m_2^2, m_3^2, m_4^2) = \Delta B_{0,m_1}(s, m_1^2, m_2^2) B_0(s, m_3^2, m_4^2) \\ + B_{0,m_1}(s, m_1^2, m_2^2) \Delta B_0(s, m_3^2, m_4^2),$$
  
$$\Delta B_0(s, m_a^2, m_b^2) = \frac{1}{s} \lambda(s, m_a^2, m_b^2) \Theta(s - (m_a + m_b)^2) \\ \Delta B_{0,m_1}(s, m_a^2, m_b^2) = \frac{m_a^2 - m_b^2 - s}{s \lambda(s, m_a^2, m_b^2)} \Theta(s - (m_a + m_b)^2)$$

3

4

Problem:  $U_4$  is divergent Solution:

$$U_4(m_1^2, m_2^2, m_3^2, m_4^2) = U_4(m_1^2, m_2^2, 0, 0) + U_4(m_1^2, 0, m_3^2, 0) + U_4(m_1^2, 0, 0, m_4^2) - 2U_4(m_1^2, 0, 0, 0) + U_{4,sub}(m_1^2, m_2^2, m_3^2, m_4^2)$$

 $\rightarrow U_4(m_X^2, m_Y^2, 0, 0)$  can be computed analytically  $\rightarrow U_{4,sub}$  is finite

$$\begin{split} U_{4,\text{sub}}(m_1^2, m_2^2, m_3^2, m_4^2) &= -\int_0^\infty ds \, A_{0,\text{fin}}(s) \, \Delta I_{\text{db},\text{sub}}(s) \\ I_{\text{db},\text{sub}}(s, m_1^2, m_2^2, m_3^2, m_4^2) &= \\ \Delta B_{0,m_1}(s, m_1^2, m_2^2) \, \text{Re} \Big\{ B_0(s, m_3^2, m_4^2) - B_0(s, 0, 0) \Big\} \\ &- \Delta B_{0,m_1}(s, m_1^2, 0) \, \text{Re} \Big\{ B_0(s, 0, m_3^2) + B_0(s, 0, m_4^2) - 2B_0(s, 0, 0) \Big\} \\ &+ \, \text{Re} \Big\{ B_{0,m_1}(s, m_1^2, m_2^2) \Big\} \, \Big[ \Delta B_0(s, m_3^2, m_4^2) - \Delta B_0(s, 0, 0) \Big] \\ &- \, \text{Re} \Big\{ B_{0,m_1}(s, m_1^2, 0) \Big\} \, \Big[ \Delta B_0(s, 0, m_3^2) + \Delta B_0(s, 0, m_4^2) - 2 \, \Delta B_0(s, 0, 0) \Big] \end{split}$$

 $U_5$  is divergent

Integration-by-parts relations:

$$\begin{split} U_5(m_1^2, m_2^2, m_3^2, m_4^2, m_5^2) \\ &= F \Big[ A_0(m_i), \, T_3(m_i, m_j, m_k), \, U_4(m_i, m_j, m_k, m_l) \Big] \\ &\quad + \frac{\lambda_{125}^2 \lambda_{345}^2}{(3-D)^2 (m_2^2 - m_1^2 + m_5^2) (m_3^2 - m_4^2 + m_5^2)} M(2, 1, 1, 2, 1, 0) \\ F[...] = \text{some linear combination (lengthy)} \\ M(2, 1, 1, 2, 1, 0) \text{ is finite} \end{split}$$

$$\int_{1}^{5} \int_{0}^{3} \int_{0}^{\infty} ds \int \frac{d^{D}q_{3}}{[q_{3}^{2} - s][q_{3}^{2} - m_{5}^{2}]} \times \text{Disc} \left[\int_{1}^{2} \int_{0}^{6} \int_{4}^{3} \int_{s}^{0} ds B_{0}(0, s, m_{5}^{2}) \text{Disc}[...]_{s}$$

$$= \int_{0}^{\infty} ds B_{0}(0, s, m_{5}^{2}) \text{Disc}[...]_{s}$$
2-loop self-energy known in terms of 1-dimensional numerical integral

Bauberger, Böhm '95

#### $U_6$ is divergent, but

 $U_6(m_1^2, m_2^2, m_3^2, m_4^2, m_5^2, m_6^2) - U_6(m_6^2, m_6^2, m_6^2, m_6^2, m_6^2, m_6^2, m_6^2)$  is finite and  $U_6(m_6^2, m_6^2, m_6^2, m_6^2, m_6^2, m_6^2)$  is analytically known Broadhurst '98

### <u>Results</u>

- $U_4$ ,  $U_5$  given in terms of one-dimensional numerical integrals
- $U_6$  given in terms of twodimensional numerical integral
- Special cases (e.g.  $m_1 = 0$ ) can also be handled

### Public code: **TVID**

- Algebraic part (Mathematica) performs subtraction of UV-divergencies
- Numerical part (C++) performs numerical integrals

```
Timing (single core Xeon 3.7 GHz):

\lesssim 0.1 \text{ s for } U_4, U_5

\lesssim 30 \text{ s for } U_6
```

At least ten digit agreement with literature (for one/two-scale cases)

Broadhurst '98; Chetyrkin, Steinhauser '99 Grigo, Hoff, Marquard, Steinhauser '12

```
Available at www.pitt.edu/~afreitas/
```

## **Conclusions**

- Numerical techniques are promising for multi-scale multi-loop integrals, but no one-size-fits-all method
- Sector decomposition: very general, but numerical convergence sometimes slow and not guaranteed
- Mellin-Barnes integrals with contour shifts: good numerical accuracy, but requires extra work for new classes of integrals

Dispersion relations for sub-loop bubbles: very efficient method for 3-loop vacuum integrals, can be extended to certain 3-loop integrals with external legs

## **Backup slides**

## Numerical integration over Feynman parameters

After removal of singularities through sector decomposition:

$$I_{\text{reg}}^{(1)} = \int_0^1 dx_1 \dots dx_{n-1} \ (A - i\epsilon)^{-k}$$

Physical thresholds: A changes sign in ingration region

- → Problematic for numerical integrators
- $\rightarrow$  Deform integration into complex plane:

$$x_i = z_i - i\lambda z_i (1 - z_i) \frac{\partial A}{\partial z_i}, \qquad 0 \le z_i \le 1.$$

Nagy, Soper '06

$$A(\vec{x}) = A(\vec{z}) - i\lambda \sum_{i} z_i (1 - z_i) \left(\frac{\partial A}{\partial z_i}\right)^2 + \mathcal{O}(\lambda^2)$$

Typical choice:  $\lambda \sim 0.5 - 1$ 

#### Potential issues:

- $\rightarrow \partial A/\partial z_i$  may vanish in certain sub-spaces
- $\rightarrow$  Thresholds may be at edge of integration region

## Variables mapping

Map MB integrals onto interval [0,1]:

$$z_i = x_i + i \frac{1}{\tan(-\pi t_i)}, \qquad t_i \in (0, 1)$$
  
Jacobian: 
$$\frac{\pi}{\sin^2(\pi t_i)}$$

In addition,  $\Gamma \rightarrow e^{\ln \Gamma}$  improves numerical stability

### $U_4$ for $m_1 = 0$

 $U_{4} \text{ with } m_{1} = 0 \text{ has IR singularity!}$   $U_{4}(0, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}) = B_{0}(0, 0, 0) T_{3}(m_{2}^{2}, m_{3}^{2}, m_{4}^{2})$   $- B_{0}(0, \delta^{2}, \delta^{2}) T_{3}(m_{2}^{2}, m_{3}^{2}, m_{4}^{2})$   $+ U_{4}(\delta^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}) + \mathcal{O}(\delta^{2})$ 

 $(\delta \ll m_i)$ 

log  $\delta$  dependence of  $U_4(\delta^2, m_2^2, m_3^2, m_4^2)$  can be extracted explicitly to avoid numerical instabilities

## Checks

(finite part shown)

| $x = 0.8^2$                     | This work                        | Grigo, Hoff, Marquard,<br>Steinhauser '12 |
|---------------------------------|----------------------------------|-------------------------------------------|
| $U_4(1, 1, 1, x)$               | 3.641562533 <mark>670</mark>     | 3.641562533 <mark>537</mark>              |
| $U_{4}(1, x, x, x)$             | 4.2095366214 <mark>73</mark>     | 4.2095366214 <mark>28</mark>              |
| M(1, 1, 1, 1, 0, 0; 1, 1, 1, x) | 37.770796736 <mark>59</mark>     | 37.770796736 <mark>39</mark>              |
| M(1, 1, 1, 1, 0, 0; 1, x, x, x) | 33.733162621 <mark>61</mark>     | 33.733162621 <mark>54</mark>              |
|                                 | This work                        | Chetyrkin,<br>Steinhauser '99             |
| $U_5(1, 1, 0, 0, 1)$            | 55.6596224612063 <mark>29</mark> | 55.6596224612063 <mark>30</mark>          |